scholarly journals The Sustainability of Irrigation Strategies in Traditional Olive Orchards

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Juan Carlos Molina-Moral ◽  
Alfonso Moriana-Elvira ◽  
Francisco José Pérez-Latorre

Olive trees are one of the few alternative crops available for farmers in arid environments. In many of these regions, surface irrigation is increasing. The aim of this study was to estimate the pattern of water soil reserves through the season considering different climatic scenarios, limitations in irrigation scheduling, and irrigation systems. Modeling was performed with the most common type of soil, and a tree density of 10 × 10 m was used. Three different climatic scenarios were estimated using eighteen agroclimatic stations along the zone (Jaén, Spain). In these climatic scenarios, different irrigation strategies were considered. First, the percentages of maximum flow available (100%, 50%, and 33%) were used. In each of these flows, the days available for irrigation were considered: daily irrigation (IDD), 20 days per month (ID20), and no irrigation, during August (RDI). The results suggest that a 33% flow strategy, the most common in the surveyed area, would produce the greatest water-stress period in the most sensitive phenological stage. However, 100%, in all scenarios, and 50% (only IDD and RDI) would obtain the best water status. According to the estimated water applied, 50% was the most advisable strategy. However, in a minimum rainfall scenario, water needs could be excessive.

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 258 ◽  
Author(s):  
María Martín-Palomo ◽  
Mireia Corell ◽  
Ignacio Girón ◽  
Luis Andreu ◽  
Alejandro Galindo ◽  
...  

Deficit irrigation scheduling is becoming increasingly important under commercial conditions. Water status measurement is a useful tool in these conditions. However, the information about water stress levels for olive trees is scarce. The aim of this experiment was to evaluate the effect on yield of a moderate controlled water stress level at the end of the irrigation season. The experiment was conducted in the experimental farm of La Hampa (Coria del Río, Seville, Spain) during three years. A completely randomized block design was performed using three different irrigation treatments. Deficit irrigation was applied several (4 or 2) weeks before harvest. Irrigation was controlled using the midday stem water potential, with a threshold value of −2 MPa and compared with a full irrigated treatment. This water stress did not reduced gas exchange during the deficit period. The effect on yield was not significant in any of the three seasons. In the high-fruit load season, fruit volume was slightly affected (around 10%), but this was not significant at harvest. Results suggest an early affection of fruit growth with water stress, but with a slow rate of decrease. Moderate water stress could be useful for the management of deficit irrigation in table olive trees.


2021 ◽  
Author(s):  
Pablo Berríos ◽  
Abdelmalek Temnani ◽  
Susana Zapata ◽  
Manuel Forcén ◽  
Sandra Martínez-Pedreño ◽  
...  

<p>Mandarin is one of the most important Citrus cultivated in Spain and the sustainability of the crop is subject to a constant pressure for water resources among the productive sectors and to a high climatic demand conditions and low rainfall (about 250 mm per year). The availability of irrigation water in the Murcia Region is generally close to 3,500 m<sup>3</sup> per ha and year, so it is only possible to satisfy 50 - 60% of the late mandarin ETc, which requires about 5,500 m<sup>3</sup> per ha. For this reason, it is necessary to provide tools to farmers in order to control the water applied in each phenological phase without promoting levels of severe water stress to the crop that negatively affect the sustainability of farms located in semi-arid conditions. Stem water potential (SWP) is a plant water status indicator very sensitive to water deficit, although its measurement is manual, discontinuous and on a small-scale.  In this way, indicators measured on a larger scale are necessary to achieve integrating the water status of the crop throughout the farm. Thus, the aim of this study was to determine the sensitivity to water deficit of different hyperspectral single bands (HSB) and their relationship with the midday SWP in mandarin trees submitted to severe water stress in different phenological phases. Four different irrigation treatments were assessed: i) a control (CTL), irrigated at 100% of the ETc throughout the growing season to satisfy plant water requirements and three water stress treatments that were irrigated at 60% of ETc throughout the season – corresponding to the real irrigation water availability – except  during: ii) the end of phase I and beginning of phase II (IS IIa), iii) the first half of phase II (IS IIb) and iv) phase III of fruit growth (IS III), which irrigation was withheld until values of -1.8 MPa of SWP or a water stress integral of 60 MPa day<sup>-1</sup>. When these threshold values were reached, the spectral reflectance values were measured between 350 and 2500 nm using a leaf level spectroradiometer to 20 mature and sunny leaves on 4 trees per treatment. Twenty-four HVI and HSB were calculated and a linear correlation was made between each of them with SWP, where the ρ940 and ρ1250 nm single bands reflectance presented r-Pearson values of -0.78** and -0.83***, respectively. Two linear regression curves fitting were made: SWP (MPa) = -11.05 ∙ ρ940 + 7.8014 (R<sup>2</sup> =0.61) and SWP (MPa) = -13.043 ∙ ρ1250 + 8.9757 (R<sup>2</sup> =0.69). These relationships were obtained with three different fruit diameters (35, 50 and 65 mm) and in a range between -0.7 and -1.6 MPa of SWP. Results obtained show the possibility of using these single bands in the detection of water stress in adult mandarin trees, and thus propose a sustainable and efficient irrigation scheduling by means of unmanned aerial vehicles equipped with sensors to carry out an automated control of the plant water status and with a suitable temporal and spatial scale to apply precision irrigation.</p>


2008 ◽  
Author(s):  
Victor Alchanatis ◽  
Steven Evett ◽  
Shabtai Cohen ◽  
Yafit Cohen ◽  
Moshe Meron ◽  
...  

2017 ◽  
Vol 60 (5) ◽  
pp. 1445-1455 ◽  
Author(s):  
Rajveer S. Dhillon ◽  
Shrini K. Upadhaya ◽  
Francisco Rojo ◽  
Jed Roach ◽  
Robert W. Coates ◽  
...  

Abstract. There is increased demand for irrigation scheduling tools that support effective use of the limited supply of irrigation water. An efficient precision irrigation system requires water to be delivered based on crop needs by measuring or estimating plant water stress. Leaf temperature is a good indicator of water stress. In this study, a system was developed to monitor leaf temperature and microclimatic environmental variables to predict plant water stress. This system, called the leaf monitor, monitored plant water status by continuously measuring leaf temperature, air temperature, relative humidity, ambient light, and wind conditions in the vicinity of a shaded leaf. The system also included a leaf holder, a solar radiation diffuser dome, and a wind barrier for improved performance of the unit. Controlled wind speed and consistent light conditions were created around the leaf to reduce the effect of nuisance variables on leaf temperature. The leaf monitor was incorporated into a mesh network of wireless nodes for sensor data collection and remote valve control. The system was evaluated for remote data collection in commercial orchards. Experiments were conducted during the 2013 and 2014 growing seasons in walnut () and almond () orchards. The system was found to be reliable and capable of providing real-time visualization of the data remotely, with minimal technical problems. Leaf monitor data were used to develop modified crop water stress index (MCWSI) values for quantifying plant water stress levels. Keywords: Almonds, CWSI, Infrared sensor, Irrigation scheduling, Leaf temperature, Nut crops, Plant water stress, Precision irrigation, Stem water potential, Walnuts, Wireless mesh network.


2013 ◽  
Vol 373 (1-2) ◽  
pp. 77-87 ◽  
Author(s):  
J. M. Torres-Ruiz ◽  
A. Diaz-Espejo ◽  
A. Morales-Sillero ◽  
M. J. Martín-Palomo ◽  
S. Mayr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document