Single hyperspectral bands are highly sensitive to water stress in adult mandarin trees

Author(s):  
Pablo Berríos ◽  
Abdelmalek Temnani ◽  
Susana Zapata ◽  
Manuel Forcén ◽  
Sandra Martínez-Pedreño ◽  
...  

<p>Mandarin is one of the most important Citrus cultivated in Spain and the sustainability of the crop is subject to a constant pressure for water resources among the productive sectors and to a high climatic demand conditions and low rainfall (about 250 mm per year). The availability of irrigation water in the Murcia Region is generally close to 3,500 m<sup>3</sup> per ha and year, so it is only possible to satisfy 50 - 60% of the late mandarin ETc, which requires about 5,500 m<sup>3</sup> per ha. For this reason, it is necessary to provide tools to farmers in order to control the water applied in each phenological phase without promoting levels of severe water stress to the crop that negatively affect the sustainability of farms located in semi-arid conditions. Stem water potential (SWP) is a plant water status indicator very sensitive to water deficit, although its measurement is manual, discontinuous and on a small-scale.  In this way, indicators measured on a larger scale are necessary to achieve integrating the water status of the crop throughout the farm. Thus, the aim of this study was to determine the sensitivity to water deficit of different hyperspectral single bands (HSB) and their relationship with the midday SWP in mandarin trees submitted to severe water stress in different phenological phases. Four different irrigation treatments were assessed: i) a control (CTL), irrigated at 100% of the ETc throughout the growing season to satisfy plant water requirements and three water stress treatments that were irrigated at 60% of ETc throughout the season – corresponding to the real irrigation water availability – except  during: ii) the end of phase I and beginning of phase II (IS IIa), iii) the first half of phase II (IS IIb) and iv) phase III of fruit growth (IS III), which irrigation was withheld until values of -1.8 MPa of SWP or a water stress integral of 60 MPa day<sup>-1</sup>. When these threshold values were reached, the spectral reflectance values were measured between 350 and 2500 nm using a leaf level spectroradiometer to 20 mature and sunny leaves on 4 trees per treatment. Twenty-four HVI and HSB were calculated and a linear correlation was made between each of them with SWP, where the ρ940 and ρ1250 nm single bands reflectance presented r-Pearson values of -0.78** and -0.83***, respectively. Two linear regression curves fitting were made: SWP (MPa) = -11.05 ∙ ρ940 + 7.8014 (R<sup>2</sup> =0.61) and SWP (MPa) = -13.043 ∙ ρ1250 + 8.9757 (R<sup>2</sup> =0.69). These relationships were obtained with three different fruit diameters (35, 50 and 65 mm) and in a range between -0.7 and -1.6 MPa of SWP. Results obtained show the possibility of using these single bands in the detection of water stress in adult mandarin trees, and thus propose a sustainable and efficient irrigation scheduling by means of unmanned aerial vehicles equipped with sensors to carry out an automated control of the plant water status and with a suitable temporal and spatial scale to apply precision irrigation.</p>

2017 ◽  
Vol 60 (5) ◽  
pp. 1445-1455 ◽  
Author(s):  
Rajveer S. Dhillon ◽  
Shrini K. Upadhaya ◽  
Francisco Rojo ◽  
Jed Roach ◽  
Robert W. Coates ◽  
...  

Abstract. There is increased demand for irrigation scheduling tools that support effective use of the limited supply of irrigation water. An efficient precision irrigation system requires water to be delivered based on crop needs by measuring or estimating plant water stress. Leaf temperature is a good indicator of water stress. In this study, a system was developed to monitor leaf temperature and microclimatic environmental variables to predict plant water stress. This system, called the leaf monitor, monitored plant water status by continuously measuring leaf temperature, air temperature, relative humidity, ambient light, and wind conditions in the vicinity of a shaded leaf. The system also included a leaf holder, a solar radiation diffuser dome, and a wind barrier for improved performance of the unit. Controlled wind speed and consistent light conditions were created around the leaf to reduce the effect of nuisance variables on leaf temperature. The leaf monitor was incorporated into a mesh network of wireless nodes for sensor data collection and remote valve control. The system was evaluated for remote data collection in commercial orchards. Experiments were conducted during the 2013 and 2014 growing seasons in walnut () and almond () orchards. The system was found to be reliable and capable of providing real-time visualization of the data remotely, with minimal technical problems. Leaf monitor data were used to develop modified crop water stress index (MCWSI) values for quantifying plant water stress levels. Keywords: Almonds, CWSI, Infrared sensor, Irrigation scheduling, Leaf temperature, Nut crops, Plant water stress, Precision irrigation, Stem water potential, Walnuts, Wireless mesh network.


1988 ◽  
Vol 18 (4) ◽  
pp. 421-426 ◽  
Author(s):  
T. C. Hennessey ◽  
E. M. Lorenzi ◽  
R. W. McNew

An experiment to quantify the response of unnodulated, fertilized European black alder (Alnusglutinosa (L.) Gaertn.) seedlings to progressive water stress showed contrasting drought tolerance among five clones, using stomatal conductance, leaf area, and height as indices of drought sensitivity. In particular, one rapidly growing clone (AG 8022-14) showed the ability to moderate changes in water stress more efficiently than the more slowly growing clones. After 30 days of moderate levels of water stress, clones that had higher stomatal conductance also had greater leaf area and height growth. Leaf area and height were both sensitive to plant water status, although no threshold of stress associated with a cessation of leaf area or height expansion was found even though stomatal conductance decreased to 0.05 cm s−1 under severe water stress.


2017 ◽  
Vol 189 ◽  
pp. 137-147 ◽  
Author(s):  
Xun Wu ◽  
Wenjing Zhang ◽  
Wen Liu ◽  
Qiang Zuo ◽  
Jianchu Shi ◽  
...  

2021 ◽  
Vol 47 (3) ◽  
pp. 110-115
Author(s):  
Johannes Hertzler ◽  
Steffen Rust

Soil water potential can be used as a proxy for plant available water in irrigation scheduling. This study investigated the relationship between soil water potential and plant water status of pines (Pinus sylvestris L.) planted into two different substrates. Predawn leaf water potential as a well-established measure of the plant water status and soil water potential correlated very well. However, estimating the plant water status from individual sensor readings is subject to significant estimation errors. Furthermore, it was shown that heterogeneous soil/root ball combinations can lead to critical effects on the soil water balance, and that sensors installed outside of the root balls cannot estimate the plant water status without site-specific calibration.


Horticulturae ◽  
2017 ◽  
Vol 3 (3) ◽  
pp. 47 ◽  
Author(s):  
Fernando Blanco-Cipollone ◽  
Sónia Lourenço ◽  
José Silvestre ◽  
Nuno Conceição ◽  
María Moñino ◽  
...  

2021 ◽  
Author(s):  
Pedro José Blaya-Ros ◽  
Víctor Blanco ◽  
Roque Torres-Sánchez ◽  
Rafael Domingo

<p>Reduced water availability is the main limiting factor for crop production in semi-arid and arid regions. For this reason, irrigation water management needs to be based on reliable information and data that are rapidly and easily acquired. The aim of the present study was to assess the sensitivity and variability of several soil and plant water status indicators in response to two cycles of withholding and resuming irrigation in sweet cherry trees. The experiment was carried out during the summers of 2018 and 2019 in an experimental orchard of sweet cherry trees [<em>Prunus avium</em> (L.) ‘Lapins’] in SE Spain. Three irrigation treatments were studied: control, CTL, irrigated to ensure non-limiting soil water conditions (115% ETc) and two water stress treatments, medium water stress, MS, and severe water stress, SS. The threshold values of midday stem water potential (Ψ<sub>stem</sub>) proposed to the first and second drought period for MS trees were -1.3 and -1.7 MPa and for SS trees were -1.6 and -2.5 MPa. After every irrigation withholding period, MS and SS trees were fully irrigated until reaching Y<sub>stem</sub> values of CTL trees. The experimental design was a completely randomized block design with three blocks per treatment. Soil and plant water status were assessed by measuring the soil volumetric water content (θv), the Ψ<sub>stem</sub>, the daily trunk growth rate (TGR), the maximum daily trunk shrinkage (MDS), the temperature of the canopy (Tc), the difference between Tc and air temperature (ΔT) and the crop water stress index (CWSI). The signal intensity (SI), the coefficient of variation (CV) and the sensitivity (S = SI/CV) of θv, Ψ<sub>stem</sub>, MDS and Tc were determined.</p><p>θv at 25 cm dropped significantly during the drought periods. Ψ<sub>stem</sub> of MS and SS trees reached minimum values close to those thresholds proposed both years of study. MDS and TGR had a rapid response to the irrigation regimen applied. Tc, ΔT and CWSI increased as an effect of the stomatal closure. Ψ<sub>stem</sub> and Tc were the water stress indicators with the highest sensitivity. MDS showed SI values greater than that of Ψ<sub>stem</sub> and Tc, although it also had greater variability (CV<sub>MDS</sub> ≈ 29%). Ψ<sub>stem</sub> showed high SI values and low CV both study years. When the linear relationships between Ψ<sub>stem</sub> and the other plant water status indicators were calculated, it was observed that the Pearson correlation coefficients exceeded 0.75 in all cases, except for TGR. The relationship obtained between MDS and Ψ<sub>stem</sub> was linear from −0.5 MPa to a threshold value of around −1.3 MPa, from that value onwards, Ψ<sub>stem</sub> decreases were not related to MDS values. In contrast, ΔT and CWSI were always linearly related to Ψ<sub>stem</sub>. These results suggest that: i) MDS could be used as a water stress indicator up to moderate water deficit; ii) Ψ<sub>stem</sub> is a sensitive water stress indicator with low variability; and iii) the thermal indicators (Tc, ΔT and CWSI) can rapidly and easily assess sweet cherry tree water status.</p><p>This study was funded by the Spanish Economy and Competitiveness Ministry (AGL2013-49047-C2-1-R; AGL2016-77282-C33-R).</p>


Sign in / Sign up

Export Citation Format

Share Document