scholarly journals Development of an Automatic Irrigation Method Using an Image-Based Irrigation System for High-Quality Tomato Production

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 106
Author(s):  
Fei Zhao ◽  
Hideo Yoshida ◽  
Eiji Goto ◽  
Shoko Hikosaka

In this study, we developed an automatic irrigation method using an image-based irrigation system for high-quality tomato production in a greenhouse by investigating effects of a diurnal periodic cycle of irrigation on the photosynthesis, growth, yield, and fruit quality of tomatoes. The diurnal periodic cycle in a moderate wilting–full recovery treatment (MR) with a medium threshold value was more frequent than that in a severe wilting–full recovery treatment (SR) with a high threshold value. Mean daily maximum wilting ratios for MR and SR were 7.2% and 11.3%, respectively, when wilting ratios were set to threshold values of 7% and 14%, respectively. Total irrigation amounts in MR and SR were similar and lower than that in the untreated control. Net photosynthetic rate decreased under water stress, with values in MR being higher than that in SR, and recovered rapidly to more than 90% of its maximum value following irrigation. Plant growth and fruit yield per plant in MR and SR were lower than that in the control. Water stress treatment could improve fruit quality when it commenced at the anthesis stage or early fruit development stage. Total irrigation amount was a more important parameter than the threshold value for controlling the growth, yield, and fruit quality of tomatoes.

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7379-7399
Author(s):  
Walid F. A. Mosa ◽  
Lidia Sas-Paszt ◽  
Krzysztof Górnik ◽  
Hayssam M. Ali ◽  
Mohamed Z. M. Salem

The present study was performed during two successive seasons 2019 and 2020 to investigate the effect of the soil application of fulvic acid (FA), seaweed extract (SE), and their different combinations on vegetative growth, yield, and fruit quality of six-years-old guava (Psidium guajava L.) cv. ‘Maamoura’. The trees were planted 4 × 4 m2 apart in clay soil under a flood irrigation system. They were treated three times starting from mid-March with one-month intervals with the following treatments: Control (water only), 3 and 4 g/L FA, 3 and 4 g/L SE, and their different combinations; 3 g/L FA + 3 g/L SE, 3 g/L FA + 4 g/L SE, 4 g/L FA + 3 g/L SE, and 4 g/L FA + 4 g/L SE. The results clearly showed that the application of FA or SE solely or in combinations increased shoot length and diameter, as well as leaf chlorophyll compared with the control. The treatments also increased fruit set percentage, fruit yield, and fruit physical and chemical characteristics such as fruit weight, size, TSS%, total reduced and non-reduced sugars, as well as leaf mineral content, while they decreased the fruit acidity compared with the control in the two seasons.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 545d-545
Author(s):  
D.I. Leskovar ◽  
J.C. Ward ◽  
R.W. Sprague ◽  
A. Meiri

Water pumping restrictions of high-quality irrigation water from underground aquifers is affecting vegetable production in Southwest Texas. There is a need to develop efficient deficit-irrigation strategies to minimize irrigation inputs and maintain crop profitability. Our objective was to determine how growth, yield, and quality of cantaloupe (Cucumis melo L. cv. `Caravelle') are affected by irrigation systems with varying input levels, including drip depth position and polyethylene mulch. Stand establishment systems used were containerized transplants and direct seeding. Field experiments were conducted on a Uvalde silty clay loam soil. Marketable yields increased in the order of pre-irrigation followed by: dry-land conditions, furrow/no-mulch, furrow/mulch, drip-surface (0 cm depth)/mulch, drip-subsurface (10-cm depth)/mulch, and drip-subsurface (30 cm depth)/mulch. Pooled across all drip depth treatments, plants on drip had higher water use efficiency than plants on furrow/no-mulch or furrow/mulch systems. Transplants with drip-surface produced 75% higher total and fruit size No. 9 yields than drip-subsurface (10- or 30-cm depth) during the first harvest, but total yields were unaffected by drip tape position. About similar trends were measured in a subsequent study except for a significant irrigation system (stand establishment interaction for yield. Total yields were highest for transplants on drip-subsurface (10-cm depth) and direct seeded plants on drip-subsurface (10 and 30 cm depth) with mulch.


2021 ◽  
pp. 1-8
Author(s):  
A. Alharbi ◽  
O. Babiker ◽  
J. Campen ◽  
M.E. Abdelaziz ◽  
F. de Zwart ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1320
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Shaidatul Azdawiyah Abdul Talib ◽  
Mohamad Zabawi Abdul Ghani ◽  
Shamsiah Sekot

Papaya cultivation on nutrient deficient acidic peat soils causes poor growth, yield, and fruit quality of this crop. Alkalinity and the high affinity of clinoptilolite zeolite (CZ) for macronutrients could improve pH, nutrient availability, and papaya productivity on peat soils. A one-year field experiment was conducted to determine the effects of CZ on: (i) soil ammonium, nitrate, P, and K, and (ii) growth, yield, and fruit quality of papaya grown on a peat soil. Treatments evaluated were: (i) different amounts of CZ (25%, 50%, 70%, and 100% of the existing recommended rate of CZ) + NPK fertilizer, and (ii) NPK fertilizer alone. The peat soils with CZ improved pH, ammonium, nitrate, P, and K availability because of the sorption of these nutrients within the structured framework of the CZ. Co-applying CZ (70% to 100%) and NPK fertilizers improved the NPK contents in papaya leaves and the growth, yield, and fruit quality of papaya because of the significant availability of ammonium, nitrate, P, and K in the peat soil for their optimum uptake by the papaya plants. Ability of CZ to buffer the soil pH reduced the need for liming. It is possible to use CZ to improve papaya productivity because CZ can regulate nutrient availability.


2017 ◽  
Vol 102 ◽  
pp. 25-31 ◽  
Author(s):  
A.M. Papadaki ◽  
F.A. Bletsos ◽  
I.G. Eleftherohorinos ◽  
G. Menexes ◽  
A.L. Lagopodi

2021 ◽  
Vol 12 (3) ◽  
pp. 193-199
Author(s):  
R. F. Mohamed ◽  
A. A. R. Atawia ◽  
H. E. M. EL-Badawy ◽  
A. M. Abd- Al-Rahman ◽  
S. F. EL-Gioushy

Sign in / Sign up

Export Citation Format

Share Document