scholarly journals Genome-Wide Distribution of Novel Ta-3A1 Mini-Satellite Repeats and Its Use for Chromosome Identification in Wheat and Related Species

Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 60 ◽  
Author(s):  
Tao Lang ◽  
Guangrong Li ◽  
Zhihui Yu ◽  
Jiwei Ma ◽  
Qiheng Chen ◽  
...  

A large proportion of the genomes of grasses is comprised of tandem repeats (TRs), which include satellite DNA. A mini-satellite DNA sequence with a length of 44 bp, named Ta-3A1, was found to be highly accumulated in wheat genome, as revealed by a comprehensive sequence analysis. The physical distribution of Ta-3A1 in chromosomes 3A, 5A, 5B, 5D, and 7A of wheat was confirmed by nondenaturing fluorescence in situ hybridization (ND-FISH) after labeling the oligonucleotide probe. The analysis of monomer variants indicated that rapid sequence amplification of Ta-3A1 occurred first on chromosomes of linkage group 5, then groups 3 and 7. Comparative ND-FISH analysis suggested that rapid changes occurred in copy number and chromosomal locations of Ta-3A1 among the different species in the tribe Triticeae, which may have been associated with chromosomal rearrangements during speciation and polyploidization. The labeling and subsequent use of Ta-3A1 by ND-FISH may assist in the precise identification and documentation of novel wheat germplasm engineered by chromosome manipulation.

2019 ◽  
Author(s):  
Tihana Vondrak ◽  
Laura Ávila Robledillo ◽  
Petr Novák ◽  
Andrea Koblížková ◽  
Pavel Neumann ◽  
...  

AbstractBackgroundAmplification of monomer sequences into long contiguous arrays is the main feature distinguishing satellite DNA from other tandem repeats, yet it is also the main obstacle in its investigation because these arrays are in principle difficult to assemble. Here we explore an alternative, assembly-free approach that utilizes ultra-long Oxford Nanopore reads to infer the length distribution of satellite repeat arrays, their association with other repeats and the prevailing sequence periodicities.ResultsWe have developed a computational workflow for similarity-based detection and downstream analysis of satellite repeats in individual nanopore reads that led to genome-wide characterization of their properties. Using the satellite DNA-rich legume plantLathyrus sativusas a model, we demonstrated this approach by analyzing eleven major satellite repeats using a set of nanopore reads ranging from 30 to over 200 kb in length and representing 0.73x genome coverage. We found surprising differences between the analyzed repeats because only two of them were predominantly organized in long arrays typical for satellite DNA. The remaining nine satellites were found to be derived from short tandem arrays located within LTR-retrotransposons that occasionally expanded in length. While the corresponding LTR-retrotransposons were dispersed across the genome, this array expansion occurred mainly in the primary constrictions of theL. sativuschromosomes, which suggests that these genome regions are favorable for satellite DNA accumulation.ConclusionsThe presented approach proved to be efficient in revealing differences in long-range organization of satellite repeats that can be used to investigate their origin and evolution in the genome.


2021 ◽  
Vol 43 (3) ◽  
pp. 237-249 ◽  
Author(s):  
Thanh Dat Ta ◽  
Nomar Espinosa Waminal ◽  
Thi Hong Nguyen ◽  
Remnyl Joyce Pellerin ◽  
Hyun Hee Kim

Abstract Background DNA tandem repeats (TRs) are often abundant and occupy discrete regions in eukaryotic genomes. These TRs often cause or generate chromosomal rearrangements, which, in turn, drive chromosome evolution and speciation. Tracing the chromosomal distribution of TRs could therefore provide insights into the chromosome dynamics and speciation among closely related taxa. The basic chromosome number in the genus Senna is 2n = 28, but dysploid species like Senna tora have also been observed. Objective To understand the dynamics of these TRs and their impact on S. tora dysploidization. Methods We performed a comparative fluorescence in situ hybridization (FISH) analysis among nine closely related Senna species and compared the chromosomal distribution of these repeats from a cytotaxonomic perspective by using the ITS1-5.8S-ITS2 sequence to infer phylogenetic relationships. Results Of the nine S. tora TRs, two did not show any FISH signal whereas seven TRs showed similar and contrasting patterns to other Senna species. StoTR01_86, which was localized in the pericentromeric regions in all S. tora, but not at the nucleolar organizer region (NOR) site, was colocalized at the NOR site in all species except in S. siamea. StoTR02_7_tel was mostly localized at chromosome termini, but some species had an interstitial telomeric repeat in a few chromosomes. StoTR05_180 was distributed in the subtelomeric region in most species and was highly amplified in the pericentromeric region in some species. StoTR06_159 was either absent or colocalized in the NOR site in some species, and StoIGS_463, which was localized at the NOR site in S. tora, was either absent or localized at the subtelomeric or pericentromeric regions in other species. Conclusions These data suggest that TRs play important roles in S. tora dysploidy and suggest the involvement of 45S rDNA intergenic spacers in “carrying” repeats during genome reshuffling.


2015 ◽  
Vol 172 (5) ◽  
pp. 571-582 ◽  
Author(s):  
Chiara Colato ◽  
Caterina Vicentini ◽  
Silvia Cantara ◽  
Serena Pedron ◽  
Paolo Brazzarola ◽  
...  

ObjectiveChromosomal rearrangements of theRETproto-oncogene is one of the most common molecular events in papillary thyroid carcinoma (PTC). However, their pathogenic role and clinical significance are still debated. This study aimed to investigate the prevalence of RET/PTC rearrangement in a cohort ofBRAFWT PTCs by fluorescencein situhybridization (FISH) and to search a reliable cut-off level in order to distinguish clonal or non-clonal RET changes.DesignFortyBRAFWT PTCs were analyzed by FISH for RET rearrangements. As controls, sixBRAFV600E mutated PTCs, 13 follicular adenomas (FA), and ten normal thyroid parenchyma were also analyzed.MethodsWe performed FISH analysis on formalin-fixed, paraffin-embedded tissue using a commercially available RET break–apart probe. A cut-off level equivalent to 10.2% of aberrant cells was accepted as significant. To validate FISH results, we analyzed the study cohort by qRT-PCR.ResultsSplit RET signals above the cut-off level were observed in 25% (10/40) of PTCs, harboring a percentage of positive cells ranging from 12 to 50%, and in one spontaneous FA (1/13, 7.7%). Overall, the data obtained by FISH matched well with qRT-PCR results. Challenging findings were observed in five cases showing a frequency of rearrangement very close to the cut-off.ConclusionsFISH approach represents a powerful tool to estimate the ratio between broken and non-broken RET tumor cells. Establishing a precise FISH cut-off may be useful in the interpretation of the presence of RET rearrangement, primarily when this strategy is used for cytological evaluation or for targeted therapy.


Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 306 ◽  
Author(s):  
Pablo Mora ◽  
Jesús Vela ◽  
Areli Ruiz-Mena ◽  
Teresa Palomeque ◽  
Pedro Lorite

Ladybird beetles (Coccinellidae) are one of the largest groups of beetles. Among them, some species are of economic interest since they can act as a biological control for some agricultural pests whereas other species are phytophagous and can damage crops. Chnootriba argus (Coccinellidae, Epilachnini) has large heterochromatic pericentromeric blocks on all chromosomes, including both sexual chromosomes. Classical digestion of total genomic DNA using restriction endonucleases failed to find the satellite DNA located on these heterochromatic regions. Cloning of C0t-1 DNA resulted in the isolation of a repetitive DNA with a repeat unit of six base pairs, TTAAAA. The amount of TTAAAA repeat in the C. argus genome was about 20%. Fluorescence in situ hybridization (FISH) analysis and digestion of chromosomes with the endonuclease Tru9I revealed that this repetitive DNA could be considered as the putative pericentromeric satellite DNA (satDNA) in this species. The presence of this satellite DNA was tested in other species of the tribe Epilachnini and it is also present in Epilachna paenulata. In both species, the TTAAAA repeat seems to be the main satellite DNA and it is located on the pericentromeric region on all chromosomes. The size of this satDNA, which has only six base pairs is unusual in Coleoptera satellite DNAs, where satDNAs usually have repeat units of a much larger size. Southern hybridization and FISH proved that this satDNA is conserved in some Epilachnini species but not in others. This result is in concordance with the controversial phylogenetic relationships among the genera of the tribe Epilachnini, where the limits between genera are unclear.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nomar Espinosa Waminal ◽  
Remnyl Joyce Pellerin ◽  
Sang-Ho Kang ◽  
Hyun Hee Kim

Tandem repeats can occupy a large portion of plant genomes and can either cause or result from chromosomal rearrangements, which are important drivers of dysploidy-mediated karyotype evolution and speciation. To understand the contribution of tandem repeats in shaping the extant Senna tora dysploid karyotype, we analyzed the composition and abundance of tandem repeats in the S. tora genome and compared the chromosomal distribution of these repeats between S. tora and a closely related euploid, Senna occidentalis. Using a read clustering algorithm, we identified the major S. tora tandem repeats and visualized their chromosomal distribution by fluorescence in situ hybridization. We identified eight independent repeats covering ~85 Mb or ~12% of the S. tora genome. The unit lengths and copy numbers had ranges of 7–5,833 bp and 325–2.89 × 106, respectively. Three short duplicated sequences were found in the 45S rDNA intergenic spacer, one of which was also detected at an extra-NOR locus. The canonical plant telomeric repeat (TTTAGGG)n was also detected as very intense signals in numerous pericentromeric and interstitial loci. StoTR05_180, which showed subtelomeric distribution in Senna occidentalis, was predominantly pericentromeric in S. tora. The unusual chromosomal distribution of tandem repeats in S. tora not only enabled easy identification of individual chromosomes but also revealed the massive chromosomal rearrangements that have likely played important roles in shaping its dysploid karyotype.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Carlos A. Venegas-Vega ◽  
Fernando Fernández-Ramírez ◽  
Luis M. Zepeda ◽  
Karem Nieto-Martínez ◽  
Laura Gómez-Laguna ◽  
...  

The use of conventional cytogenetic techniques in combination with fluorescentin situhybridization (FISH) and single-nucleotide polymorphism (SNP) microarrays is necessary for the identification of cryptic rearrangements in the diagnosis of chromosomal syndromes. We report two siblings, a boy of 9 years and 9 months of age and his 7-years- and 5-month-old sister, with the classic Wolf-Hirschhorn syndrome (WHS) phenotype. Using high-resolution GTG- and NOR-banding karyotypes, as well as FISH analysis, we characterized a pure 4p deletion in both sibs and a balanced rearrangement in their father, consisting in an insertion of 4p material within a nucleolar organizing region of chromosome 15. Copy number variant (CNV) analysis using SNP arrays showed that both siblings have a similar size of 4p deletion (~6.5 Mb). Our results strongly support the need for conventional cytogenetic and FISH analysis, as well as high-density microarray mapping for the optimal characterization of the genetic imbalance in patients with WHS; parents must always be studied for recognizing cryptic balanced chromosomal rearrangements for an adequate genetic counseling.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258474
Author(s):  
Vergiana dos Santos Paixão ◽  
Pablo Suárez ◽  
Willam Oliveira da Silva ◽  
Lena Geise ◽  
Malcolm Andrew Ferguson-Smith ◽  
...  

Rhipidomys (Sigmodontinae, Thomasomyini) has 25 recognized species, with a wide distribution ranging from eastern Panama to northern Argentina. Cytogenetic data has been described for 13 species with 12 of them having 2n = 44 with a high level of autosomal fundamental number (FN) variation, ranging from 46 to 80, assigned to pericentric inversions. The species are grouped in groups with low FN (46–52) and high FN (72–80). In this work the karyotypes of Rhipidomys emiliae (2n = 44, FN = 50) and Rhipidomys mastacalis (2n = 44, FN = 74), were studied by classical cytogenetics and by fluorescence in situ hybridization using telomeric and whole chromosome probes (chromosome painting) of Hylaeamys megacephalus (HME). Chromosome painting revealed homology between 36 segments of REM and 37 of RMA. We tested the hypothesis that pericentric inversions are the predominant chromosomal rearrangements responsible for karyotypic divergence between these species, as proposed in literature. Our results show that the genomic diversification between the karyotypes of the two species resulted from translocations, centromeric repositioning and pericentric inversions. The chromosomal evolution in Rhipidomys was associated with karyotypical orthoselection. The HME probes revealed that seven syntenic probably ancestral blocks for Sigmodontinae are present in Rhipidomys. An additional syntenic block described here is suggested as part of the subfamily ancestral karyotype. We also define five synapomorphies that can be used as chromosomal signatures for Rhipidomys.


2021 ◽  
Vol 17 (1) ◽  
pp. e1007814
Author(s):  
Pedro Manuel Martínez-García ◽  
Miguel García-Torres ◽  
Federico Divina ◽  
José Terrón-Bautista ◽  
Irene Delgado-Sainz ◽  
...  

DNA topoisomerase II-β (TOP2B) is fundamental to remove topological problems linked to DNA metabolism and 3D chromatin architecture, but its cut-and-reseal catalytic mechanism can accidentally cause DNA double-strand breaks (DSBs) that can seriously compromise genome integrity. Understanding the factors that determine the genome-wide distribution of TOP2B is therefore not only essential for a complete knowledge of genome dynamics and organization, but also for the implications of TOP2-induced DSBs in the origin of oncogenic translocations and other types of chromosomal rearrangements. Here, we conduct a machine-learning approach for the prediction of TOP2B binding using publicly available sequencing data. We achieve highly accurate predictions, with accessible chromatin and architectural factors being the most informative features. Strikingly, TOP2B is sufficiently explained by only three features: DNase I hypersensitivity, CTCF and cohesin binding, for which genome-wide data are widely available. Based on this, we develop a predictive model for TOP2B genome-wide binding that can be used across cell lines and species, and generate virtual probability tracks that accurately mirror experimental ChIP-seq data. Our results deepen our knowledge on how the accessibility and 3D organization of chromatin determine TOP2B function, and constitute a proof of principle regarding the in silico prediction of sequence-independent chromatin-binding factors.


Genome ◽  
2002 ◽  
Vol 45 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Orfeo Picariello ◽  
Isidoro Feliciello ◽  
Renato Bellinello ◽  
Gianni Chinali

The brown frog Rana graeca was believed to be present in two areas, the Balkan Peninsula and the Italian Apennines. We have characterised the S1 satellite DNA family from Rana graeca graeca and compared it with that of Rana graeca italica. On Southern blots, the patterns of S1 satellite DNA bands are very different between Italian and Greek specimens, but homogeneous among various populations of the same taxon. The satellite DNA from the Greek taxon contains two repetitive units (S1a (494 bp) and S1b (363 bp)) that could be sequenced after amplification from genomic DNA to directly yield their consensus sequences in each genome. These consensus sequences were very similar among the Greek populations, but differed either in sequence (in S1a) or in both size and sequence (in S1b) from the corresponding repeats of the Italian taxon. A mechanism of concerted evolution is likely responsible for the high homogeneity of S1a and S1b repeat sequences within each genome and species. The genomic content of S1 satellite DNA was lower in the Greek than in the Italian populations (0.5 vs. 1.9%) and fluorescence in situ hybridization (FISH) analysis showed the S1 satellite on only 4 chromosome pairs in the Greek taxon and on all 13 chromosome pairs in the Italian taxon. The completely different structure and genomic organization of the S1 satellite DNA indicate that the Greek and Italian taxa are distinct species: R. graeca and R. italica.Key words: satellite DNA, DNA sequence, Southern blot, FISH, Rana.


Genome ◽  
1993 ◽  
Vol 36 (3) ◽  
pp. 467-475 ◽  
Author(s):  
Miroslav Plohl ◽  
Vlatka Lucijanić-Justić ◽  
Durdica Ugarković ◽  
Eduard Petitpierre ◽  
Carlos Juan

The chromosomes of Tribolium confusum have conspicuous bulks of pericentromeric constitutive heterochromatin. The amount of heterochromatin measured by C-banding in metaphase chromosomes is estimated to be 40–45%. It is composed of an A + T rich DNA according to the distamycin A/diamidinophenylindol staining of chromosomes. Restriction analysis of isolated T. confusum genomic DNA shows that this species has a satellite DNA that constitutes about 40% of the genome. Cloning and sequencing experiments reveal a monomer length of 158 base pairs and a copy number of 5.77 × 105 per haploid genome. Its sequence is A + T rich (73%), with direct and inverted repeats, one of them with a possibility of forming stable cruciform structure. The abundance, monomer length, and the mutation rate are similar to those found in other satellite families from different species of Tenebrionidae, but no sequence homology has been found among them. No retarded mobility of satellite DNA, characteristic for molecules with sequence-induced curvature, has been detected by electrophoresis on nondenaturing polyacrylamide gels. In situ digestions with restriction enzymes and in situ hybridization show that this satellite DNA is located in pericentromeric positions of all chromosomes coinciding with C-bands.Key words: tandem repeats, DNA sequence, bent DNA, inverted repeats, Coleoptera.


Sign in / Sign up

Export Citation Format

Share Document