scholarly journals Maize Kernel Abortion Recognition and Classification Using Binary Classification Machine Learning Algorithms and Deep Convolutional Neural Networks

AI ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 361-375
Author(s):  
Lovemore Chipindu ◽  
Walter Mupangwa ◽  
Jihad Mtsilizah ◽  
Isaiah Nyagumbo ◽  
Mainassara Zaman-Allah

Maize kernel traits such as kernel length, kernel width, and kernel number determine the total kernel weight and, consequently, maize yield. Therefore, the measurement of kernel traits is important for maize breeding and the evaluation of maize yield. There are a few methods that allow the extraction of ear and kernel features through image processing. We evaluated the potential of deep convolutional neural networks and binary machine learning (ML) algorithms (logistic regression (LR), support vector machine (SVM), AdaBoost (ADB), Classification tree (CART), and the K-Neighbor (kNN)) for accurate maize kernel abortion detection and classification. The algorithms were trained using 75% of 66 total images, and the remaining 25% was used for testing their performance. Confusion matrix, classification accuracy, and precision were the major metrics in evaluating the performance of the algorithms. The SVM and LR algorithms were highly accurate and precise (100%) under all the abortion statuses, while the remaining algorithms had a performance greater than 95%. Deep convolutional neural networks were further evaluated using different activation and optimization techniques. The best performance (100% accuracy) was reached using the rectifier linear unit (ReLu) activation procedure and the Adam optimization technique. Maize ear with abortion were accurately detected by all tested algorithms with minimum training and testing time compared to ear without abortion. The findings suggest that deep convolutional neural networks can be used to detect the maize ear abortion status supplemented with the binary machine learning algorithms in maize breading programs. By using a convolution neural network (CNN) method, more data (big data) can be collected and processed for hundreds of maize ears, accelerating the phenotyping process.

Author(s):  
Alae Chouiekh ◽  
El Hassane Ibn El Haj

Several machine learning models have been proposed to address customer churn problems. In this work, the authors used a novel method by applying deep convolutional neural networks on a labeled dataset of 18,000 prepaid subscribers to classify/identify customer churn. The learning technique was based on call detail records (CDR) describing customers activity during two-month traffic from a real telecommunication provider. The authors use this method to identify new business use case by considering each subscriber as a single input image describing the churning state. Different experiments were performed to evaluate the performance of the method. The authors found that deep convolutional neural networks (DCNN) outperformed other traditional machine learning algorithms (support vector machines, random forest, and gradient boosting classifier) with F1 score of 91%. Thus, the use of this approach can reduce the cost related to customer loss and fits better the churn prediction business use case.


2018 ◽  
Vol 10 (10) ◽  
pp. 1513 ◽  
Author(s):  
Julio Duarte-Carvajalino ◽  
Diego Alzate ◽  
Andrés Ramirez ◽  
Juan Santa-Sepulveda ◽  
Alexandra Fajardo-Rojas ◽  
...  

This work presents quantitative prediction of severity of the disease caused by Phytophthora infestans in potato crops using machine learning algorithms such as multilayer perceptron, deep learning convolutional neural networks, support vector regression, and random forests. The machine learning algorithms are trained using datasets extracted from multispectral data captured at the canopy level with an unmanned aerial vehicle, carrying an inexpensive digital camera. The results indicate that deep learning convolutional neural networks, random forests and multilayer perceptron using band differences can predict the level of Phytophthora infestans affectation on potato crops with acceptable accuracy.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 588 ◽  
Author(s):  
Taylor Simons ◽  
Dah-Jye Lee

This paper explores a set of learned convolutional kernels which we call Jet Features. Jet Features are efficient to compute in software, easy to implement in hardware and perform well on visual inspection tasks. Because Jet Features can be learned, they can be used in machine learning algorithms. Using Jet Features, we make significant improvements on our previous work, the Evolution Constructed Features (ECO Features) algorithm. Not only do we gain a 3.7× speedup in software without loosing any accuracy on the CIFAR-10 and MNIST datasets, but Jet Features also allow us to implement the algorithm in an FPGA using only a fraction of its resources. We hope to apply the benefits of Jet Features to Convolutional Neural Networks in the future.


Author(s):  
Sergey Ulyanov ◽  
Andrey Filipyev ◽  
Kirill Koshelev

This article aims to reveal that deep machine learning algorithms can be applied in a variety of commercial companies in order to improve developing intelligent systems. The major task which would be discussedin the application of convolutional neural networks for recognizing recipes of products and providing the possibility of maintenance decision making in business processes. Besides algorithms, the problems of real projects like gathering and preprocessing data would be considered and possible solutions suggested.


2021 ◽  
Vol 7 ◽  
pp. e645
Author(s):  
Ramish Jamil ◽  
Imran Ashraf ◽  
Furqan Rustam ◽  
Eysha Saad ◽  
Arif Mehmood ◽  
...  

Sarcasm emerges as a common phenomenon across social networking sites because people express their negative thoughts, hatred and opinions using positive vocabulary which makes it a challenging task to detect sarcasm. Although various studies have investigated the sarcasm detection on baseline datasets, this work is the first to detect sarcasm from a multi-domain dataset that is constructed by combining Twitter and News Headlines datasets. This study proposes a hybrid approach where the convolutional neural networks (CNN) are used for feature extraction while the long short-term memory (LSTM) is trained and tested on those features. For performance analysis, several machine learning algorithms such as random forest, support vector classifier, extra tree classifier and decision tree are used. The performance of both the proposed model and machine learning algorithms is analyzed using the term frequency-inverse document frequency, bag of words approach, and global vectors for word representations. Experimental results indicate that the proposed model surpasses the performance of the traditional machine learning algorithms with an accuracy of 91.60%. Several state-of-the-art approaches for sarcasm detection are compared with the proposed model and results suggest that the proposed model outperforms these approaches concerning the precision, recall and F1 scores. The proposed model is accurate, robust, and performs sarcasm detection on a multi-domain dataset.


Landslides can easily be tragic to human life and property. Increase in the rate of human settlement in the mountains has resulted in safety concerns. Landslides have caused economic loss between 1-2% of the GDP in many developing countries. In this study, we discuss a deep learning approach to detect landslides. Convolutional Neural Networks are used for feature extraction for our proposed model. As there was no source of an exact and precise data set for feature extraction, therefore, a new data set was built for testing the model. We have tested and compared this work with our proposed model and with other machine-learning algorithms such as Logistic Regression, Random Forest, AdaBoost, K-Nearest Neighbors and Support Vector Machine. Our proposed deep learning model produces a classification accuracy of 96.90% outperforming the classical machine-learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document