scholarly journals Enteric Methane Emissions of Dairy Cows Predicted from Fatty Acid Profiles of Milk, Cream, Cheese, Ricotta, Whey, and Scotta

Animals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Giovanni Bittante ◽  
Matteo Bergamaschi

Enteric methane emissions (EME) of ruminants contribute to global climate change, but any attempt to reduce it will need an easy, inexpensive, and accurate method of quantification. We used a promising indirect method for estimating EMEs of lactating dairy cows based on the analysis of the fatty acid (FA) profile of their milk. The aim of this preliminary study was to assess milk from four single samplings (morning whole, evening whole, evening partially skimmed, and vat milks) as alternatives to reference whole milk samples from two milkings. Three fresh products (cream, cheese, and ricotta), two by-products (whey and scotta), and two long-ripened cheeses (6 and 12 months) were also assessed as alternative sources of information to reference milk. The 11 alternative matrices were obtained from seven experimental cheese- and ricotta-making sessions carried out every two weeks following the artisanal Malga cheese-making procedure using milk from 148 dairy cows kept on summer highland pastures. A total of 131 samples of milk, dairy products, and by-products were analyzed to determine the milk composition and to obtain detailed FA profiles using bi-dimensional gas-chromatography. Two equations taken from a published meta-analysis of methane emissions measured in the respiration chambers of cows on 30 different diets were applied to the proportions of butyric, iso-palmitic, iso-oleic, vaccenic, oleic, and linoleic acids out of total FAs to predict methane yield per kg of dry matter ingested and methane intensity per kg of fat and protein corrected milk produced by the cows. Methane yield and intensity could be predicted from single milk samples with good accuracy (trueness and precision) with respect to those predicted from reference milk. The fresh products (cream, cheese and ricotta) generally showed good levels of trueness but low precision for predicting both EME traits, which means that a greater number of samples needs to be analyzed. Among by-products, whey could be a viable alternative source of information for predicting both EME traits, whereas scotta overestimated both traits and showed low precision (due also to its very low fat content). Long-ripened cheeses were found to be less valuable sources of information, although six-month cheese could, with specific correction factors, be acceptable sources of information for predicting the methane yield of lactating cows. These preliminary results need to be confirmed by further study on different dairy systems and cheese-making technologies but offer new insight into a possible easy method for monitoring the EME at the field level along the dairy chain.

2016 ◽  
Vol 56 (3) ◽  
pp. 451 ◽  
Author(s):  
Xuezhao Sun ◽  
David Pacheco ◽  
Dongwen Luo

A series of experiments was conducted in New Zealand to evaluate the potential of forage brassicas for mitigation of enteric methane emissions. Experiments involved sheep and cattle fed winter and summer varieties of brassica forage crops. In the sheep-feeding trials, it was demonstrated that several species of forage brassicas can result, to a varying degree, in a lower methane yield (g methane per kg of DM intake) than does ryegrass pasture. Pure forage rape fed as a winter crop resulted in 37% lower methane yields than did pasture. Increasing the proportion of forage rape in the diet of sheep fed pasture linearly decreased methane yield. Feeding forage rape to cattle also resulted in 44% lower methane yield than did feeding pasture. In conclusion, reductions in methane emission are achievable by feeding forage brassicas, especially winter forage rape, to sheep and cattle. Investigating other aspects of these crops is warranted to establish their value as a viable mitigation tool in pastoral farming.


2014 ◽  
Vol 60 (5) ◽  
pp. 267-275 ◽  
Author(s):  
Valeria A. Torok ◽  
Nigel J. Percy ◽  
Peter J. Moate ◽  
Kathy Ophel-Keller

The rumen microbiota contributes to greenhouse gas emissions and has an impact on feed efficiency and ruminant product fatty acid composition. Dietary fat supplements have shown promise in reducing enteric methane production and in altering the fatty acid profiles of ruminant-derived products, yet in vivo studies on how these impact the rumen microbiota are limited. In this study, we investigated the rumen bacterial, archaeal, fungal, and ciliate protozoan communities of dairy cows fed diets supplemented with 4 levels of docosahexaenoic acid (DHA) (0, 25, 50, and 75 g·cow−1·day−1) and established linkages between microbial communities and production parameters. Supplementation with DHA significantly (P < 0.05) altered rumen bacterial and archaeal, including methanogenic archaeal, communities but had no significant (P > 0.05) effects on rumen fungal or ciliate protozoan communities. Rumen bacterial communities of cows receiving no DHA were correlated with increased saturated fatty acids (C18:0 and C11:0) in their milk. Furthermore, rumen bacterial communities of cows receiving a diet supplemented with 50 g DHA·cow−1·day−1 were correlated with increases in monounsaturated fatty acids (C20:1n-9) and polyunsaturated fatty acids (C22:5n-3; C22:6n-3; C18:2 cis-9, trans-11; C22:3n-6; and C18:2n-6 trans) in their milk. The significant diet-associated changes in rumen archaeal communities observed did not result in altered enteric methane outputs in these cows.


Author(s):  
Bénédict Yanibada ◽  
Ulli Hohenester ◽  
Mélanie Pétéra ◽  
Cécile Canlet ◽  
Stéphanie Durand ◽  
...  

2019 ◽  
Vol 102 (11) ◽  
pp. 10616-10631 ◽  
Author(s):  
A. Bougouin ◽  
J. A. D. Ranga Niroshan Appuhamy ◽  
A. Ferlay ◽  
E. Kebreab ◽  
C. Martin ◽  
...  

2017 ◽  
Vol 57 (7) ◽  
pp. 1465 ◽  
Author(s):  
P. J. Moate ◽  
S. R. O. Williams ◽  
M. H. Deighton ◽  
M. C. Hannah ◽  
J. L. Jacobs ◽  
...  

There is a need to develop simple, accurate methods for predicting methane emissions, yields and intensities of dairy cows. Several studies have focussed on the relationship between the concentrations of trans-10 plus trans-11 C18:1 fatty acids in milk fat and methane yield. The aim of the present study was to perform a meta-analysis to quantify relationships between the concentrations of various trans isomers of C18:1 in milk fat and methane emissions (g/day), methane yield (g/kg dry-matter intake) and methane intensity (g/kg energy-corrected milk yield). Data were from seven experiments encompassing 23 different diets and 220 observations of milk fatty acid concentrations and methane emissions. Univariate linear mixed-effects regression models were fitted to the data with the linear term as a fixed effect and with experiment and observation within experiment as random effects. Concentrations of trans-9, trans-10, trans-11 and trans-10 plus trans-11 isomers of C18:1 were poorly related to methane emissions, yields and intensities, with the best relationships being between trans-10 C18:1 and methane emissions (R2 = 0.356), trans-10 C18:1 and methane yield (R2 = 0.265) and trans-10 plus trans-11 C18:1 and methane intensity (R2 = 0.124). The data indicated that the relationships between trans-10 C18:1 and methane metrics were not linear, but were biphasic and better described by an exponential model. However, even exponential models poorly fitted the data. It is concluded that the concentrations of trans isomers of C18:1 have limited potential to accurately predict methane emissions, yields or intensities of dairy cows.


Sign in / Sign up

Export Citation Format

Share Document