scholarly journals Salinity, Temperature and Ammonia Acute Stress Response in Seabream (Sparus aurata) Juveniles: A Multidisciplinary Study

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Matteo Zarantoniello ◽  
Martina Bortoletti ◽  
Ike Olivotto ◽  
Stefano Ratti ◽  
Carlo Poltronieri ◽  
...  

The present study aimed to investigate the acute response of gilthead seabream (Sparus aurata) juveniles exposed to temperature, salinity and ammonia stress. Radioimmunoassay was used to evaluate cortisol levels, whereas insulin-like growth factors (igf1 and igf2), myostatin (mstn), heat-shock protein 70 (hsp70) and glucocorticoid receptor (gr) gene expression was assessed trough Real-Time PCR. The presence and localization of IGF-I and HSP70 were investigated by immunohistochemistry. In all the stress conditions, a significant increase in cortisol levels was observed reaching higher values in the thermic and chemical stress groups. Regarding fish growth markers, igf1 gene expression was significantly higher only in fish subjected to heat shock stress while, at 60 min, igf2 gene expression was significantly lower in all the stressed groups. Temperature and ammonia changes resulted in a higher mstn gene expression. Molecular analyses on stress response evidenced a time dependent increase in hsp70 gene expression, that was significantly higher at 60 min in fish exposed to heat shock and chemical stress. Furthermore, the same experimental groups were characterized by a significantly higher gr gene expression respect to the control one. Immunostaining for IGF-I and HSP70 antibodies was observed in skin, gills, liver, and digestive system of gilthead seabream juveniles.

2007 ◽  
Vol 196 (2) ◽  
pp. 313-322 ◽  
Author(s):  
Juan Castillo ◽  
Barbara Castellana ◽  
Laura Acerete ◽  
Josep V Planas ◽  
Frederick W Goetz ◽  
...  

Steroidogenic acute regulatory protein (StAR) transfers cholesterol over the inner mitochondrial membrane. In mammals, StAR controls this rate-limiting step of steroidogenesis, but its expression and regulation has not been well explored in fish. The present work investigates StAR mRNA expression in the head kidney of the gilthead seabream (Sparus aurata) under different stressors. We have cloned the StAR cDNA (1461 bp) in seabream (accession number EF640987), which has an open reading frame of 861 nucleotides encoding a polypeptide of 286 aa, and displays high sequence identity with StAR of other fish and mammalian counterparts. Seabream StAR transcripts were found to be expressed exclusively in head kidneys and gonads. In fish under acute stress (chased with a net), plasma cortisol levels peaked within 1 h, were still high after 6 h, and decreased after 16 h, although no increases in head kidney StAR expression were observed at any time post-stressor. Fish under chronic high-density stress showed cortisol levels 90-fold higher than controls and StAR mRNA levels increased threefold. Lipopolysaccharide (LPS) injection increased head kidney StAR mRNA levels after 6 h, reached a maximum at 12 h, and decreased until 72 h. When the head kidney cells were incubated in vitro and treated with ACTH or LPS, ACTH induced an increase in StAR expression as expected, but LPS induced a reduction in StAR expression. In conclusion, StAR expression in seabream head kidneys is highly regulated by different stressors.


Aquaculture ◽  
2004 ◽  
Vol 238 (1-4) ◽  
pp. 369-383 ◽  
Author(s):  
R.D. Van Anholt ◽  
W.M. Koven ◽  
S. Lutzky ◽  
S.E. Wendelaar Bonga

2015 ◽  
Vol 112 (42) ◽  
pp. E5669-E5678 ◽  
Author(s):  
Neri Minsky ◽  
Robert G. Roeder

In recent years an extensive effort has been made to elucidate the molecular pathways involved in metabolic signaling in health and disease. Here we show, surprisingly, that metabolic regulation and the heat-shock/stress response are directly linked. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator of metabolic genes, acts as a direct transcriptional repressor of heat-shock factor 1 (HSF1), a key regulator of the heat-shock/stress response. Our findings reveal that heat-shock protein (HSP) gene expression is suppressed during fasting in mouse liver and in primary hepatocytes dependent on PGC-1α. HSF1 and PGC-1α associate physically and are colocalized on several HSP promoters. These observations are extended to several cancer cell lines in which PGC-1α is shown to repress the ability of HSF1 to activate gene-expression programs necessary for cancer survival. Our study reveals a surprising direct link between two major cellular transcriptional networks, highlighting a previously unrecognized facet of the activity of the central metabolic regulator PGC-1α beyond its well-established ability to boost metabolic genes via its interactions with nuclear hormone receptors and nuclear respiratory factors. Our data point to PGC-1α as a critical repressor of HSF1-mediated transcriptional programs, a finding with possible implications both for our understanding of the full scope of metabolically regulated target genes in vivo and, conceivably, for therapeutics.


2020 ◽  
Vol 32 (6) ◽  
pp. 4347-4359
Author(s):  
Francisca Silva-Brito ◽  
Francisco A. Guardiola ◽  
Thaís Cavalheri ◽  
Rui Pereira ◽  
Helena Abreu ◽  
...  

mSystems ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Iwona B. Wenderska ◽  
Andrew Latos ◽  
Benjamin Pruitt ◽  
Sara Palmer ◽  
Grace Spatafora ◽  
...  

ABSTRACT Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans, DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans, XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a potential role in competence shutoff. Together, our results provide further evidence that multiple stress response mechanisms are linked through the genetic competence signaling pathway in S. mutans. In the cariogenic Streptococcus mutans, competence development is regulated by the ComRS signaling system comprised of the ComR regulator and the ComS prepeptide to the competence signaling peptide XIP (ComX-inducing peptide). Aside from competence development, XIP signaling has been demonstrated to regulate cell lysis, and recently, the expression of bacteriocins, small antimicrobial peptides used by bacteria to inhibit closely related species. Our study further explores the effect of XIP signaling on the S. mutans transcriptome. RNA sequencing revealed that XIP induction resulted in a global change in gene expression that was consistent with a stress response. An increase in several membrane-bound regulators, including HdrRM and BrsRM, involved in bacteriocin production, and the VicRKX system, involved in acid tolerance and biofilm formation, was observed. Furthermore, global changes in gene expression corresponded to changes observed during the stringent response to amino acid starvation. Effects were also observed on genes involved in sugar transport and carbon catabolite repression and included the levQRST and levDEFG operons. Finally, our work identified a novel heat shock-responsive intergenic region, encoding a small RNA, with a potential role in competence shutoff. IMPORTANCE Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans, DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans, XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a potential role in competence shutoff. Together, our results provide further evidence that multiple stress response mechanisms are linked through the genetic competence signaling pathway in S. mutans.


2013 ◽  
Vol 35 (3) ◽  
pp. 883-889 ◽  
Author(s):  
Martha Reyes-Becerril ◽  
Francisco Guardiola ◽  
Maurilia Rojas ◽  
Felipe Ascencio-Valle ◽  
María Ángeles Esteban

2016 ◽  
Vol 236 ◽  
pp. 98-104 ◽  
Author(s):  
E.E. Malandrakis ◽  
O. Dadali ◽  
E. Golomazou ◽  
M. Kavouras ◽  
S. Dailianis ◽  
...  

Aquaculture ◽  
2014 ◽  
Vol 420-421 ◽  
pp. 247-253 ◽  
Author(s):  
Alkisti Batzina ◽  
Dimitris Kalogiannis ◽  
Christina Dalla ◽  
Zeta Papadopoulou-Daifoti ◽  
Stella Chadio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document