scholarly journals Behavioral Responses of Wild Rodents to Owl Calls in an Austral Temperate Forest

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 428
Author(s):  
Mᵃ Carmen Hernández ◽  
Denise M. Jara-Stapfer ◽  
Ana Muñoz ◽  
Cristian Bonacic ◽  
Isabel Barja ◽  
...  

Ecologically based rodent management strategies are arising as a sustainable approach to rodent control, allowing us to preserve biodiversity while safeguarding human economic activities. Despite predator signals being known to generally repel rodents, few field-based studies have compared the behavioral effects of several predators on different prey species, especially in Neotropical ecosystems. Here, we used camera traps to study the behavior of rodent species native to the Chilean temperate forest (Abrothrix spp., long-tailed pygmy rice rat Oligoryzomys longicaudatus) and an introduced rodent (black rat Rattus rattus). Using playbacks of raptor calls, we experimentally exposed rodents to three predation risk treatments: austral pygmy owl calls (Glaucidium nana), rufous-legged owl calls (Strix rufipes) and a control treatment (absence of owl calls). We evaluated the effects of the treatments on the time allocated to three behaviors: feeding time, locomotor activity and vigilance. Moonlight and vegetation cover were also considered in the analyses, as they can modify perceived predation risk. Results showed that predator calls and environmental factors modified prey behavior depending not only on the predator species, but also on the rodent species. Consequently, owl playbacks could be regarded as a promising rodent control tool, knowing that future studies would be critical to deeply understand differences between species in order to select the most effective predator cues.

2020 ◽  
Vol 3 (1) ◽  
pp. 35
Author(s):  
Karolina D. Jasińska ◽  
Mateusz Jackowiak ◽  
Jakub Gryz ◽  
Szymon Bijak ◽  
Katarzyna Szyc ◽  
...  

Human presence or activities are perceived by animals as those associated with predation risk so activity and exploration patterns of animals should be shaped by indices of anthropogenic disturbances. The high level of human disturbances is noticed in big cities. Therefore, the aim of the study was to determine the occurrence of roe deer in Warsaw and its activity in the Warsaw urban forests. We used snow tracking on transect routes (winter seasons 2016, 2017, 2018; 115.1 km in total) to determine roe deer occurrence in four habitats: forests, open areas, parks, and built-up areas. The number of tracks was highest in forests (4.6 tracks/1 km/24 h), followed by open areas, built-up areas, and parks. We used camera traps to determine the activity of roe deer in selected urban forests. We collected 697 observations of roe deer in Warsaw forests in the years 2016–2019 (per 4826 trap-days in total). The peak of roe deer activity was noticed between 4:00 and 5:00 a.m. Animals were least active at 1:00–2:00 p.m. and between 11:00 p.m.–01:00 a.m. Our research showed that roe deer inhabiting the urban area avoided human presence by using well-covered habitats and being active in periods when humans’ disturbances’ level is lower.


2015 ◽  
Vol 57 (2) ◽  
pp. 129-132 ◽  
Author(s):  
Gaspar PENICHE-LARA ◽  
Karla DZUL-ROSADO ◽  
Carlos PÉREZ-OSORIO ◽  
Jorge ZAVALA-CASTRO

Rickettsia typhi is the causal agent of murine typhus; a worldwide zoonotic and vector-borne infectious disease, commonly associated with the presence of domestic and wild rodents. Human cases of murine typhus in the state of Yucatán are frequent. However, there is no evidence of the presence of Rickettsia typhi in mammals or vectors in Yucatán. The presence of Rickettsia in rodents and their ectoparasites was evaluated in a small municipality of Yucatán using the conventional polymerase chain reaction technique and sequencing. The study only identified the presence of Rickettsia typhi in blood samples obtained from Rattus rattus and it reported, for the first time, the presence of R. felis in the flea Polygenis odiosus collected from Ototylomys phyllotis rodent. Additionally, Rickettsia felis was detected in the ectoparasite Ctenocephalides felis fleas parasitizing the wild rodent Peromyscus yucatanicus. This study’s results contributed to a better knowledge of Rickettsia epidemiology in Yucatán.


2008 ◽  
Vol 12 (1) ◽  
pp. 113 ◽  
Author(s):  
Christian Giovanii Estrada Hernández

RESUMEN: La Selva Maya es el bosque tropical de hoja ancha más extenso de Centroamérica, se extiende entre México, Guatemala y Belice. El jaguar y el puma, son los felinos más grandes de América. En esta zona viven simpátricamente por lo que se presupone segregación en alguno de los componentes de su nicho ecológico. En este estudio se analizaron y compararon tres de los componentes principales del nicho: dieta, uso de hábitat y patrones de actividad, con el objetivo de evaluar si existe segregación entre el jaguar y el puma. Para la obtención de los datos se colectaron excrementos de manera oportunista, y se utilizaron trampas de cámaras automáticas en cuatro áreas protegidas. Se analizo la zona de estudio, a través de sistemas de información geográfica para determinar las proporciones de distintos tipos de hábitat presentes, y se colectaron datos de abundancias de las presas. Se analizaron los patrones y en la dieta, en el hábitat utilizado y en el horario de actividad. Se determino que el jaguar tuvo una dieta diferente y mas amplia comparada con la del puma, así también que este consume en promedio, presas más pequeñas. Las presas preferidas por elpuma fueron, tres especies de venados y tepezcuintles. Para el jaguar fueron coches de monte, pizotes y armadillos. Ambas especies presentaron un patrón similar de uso de hábitat, donde el "bosque alto" fue utilizado proporcionalmente a su abundancia, y el puma evitó el "bosque bajo". En cuanto a los patrones de actividad, ambos prefirieron horas nocturnas para desplazarse, aunque el puma presento mayor variabilidad. Se observo que ambas especies no se segregan mutuamente, espacial ni temporalmente. La frecuente utilización del "bosque bajo" y su relación con las aguadas y arroyos, es un factor importante en el mantenimiento de poblaciones de grandes felinos en la Selva MayaPALABRAS CLAVE: Felidae, Panthera onca, Puma concolor, coexistencia, nicho ecológico, Selva Maya, segregación ecológica.ABSTRACT: The Mayan Forest is the largest tropical broad-leaf forest remainder in Central America which extends between Mexico, Guatemala and Belize. Jaguar and puma are the biggest American wild cats. In this area both live sympatric which suggest segregation in at least one of its ecological niche components. In this study I analyzed and compared three of the principal niche components: diet, habitat use and activity patterns, with the main objective of assess if occurs ecological segregation among jaguar and puma. To obtain the data it was collected  jaguar and puma’s scats in an opportunistic way, and was used automatic camera traps in four protected areas. I analyzed the study area by geographic information system (GIS) to determine proportions of different habitat types, and also I used  previous collected prey abundance data. I analyzed patterns in diet, in habitat use and temporal activity. I found that jaguar had a wider prey spectrum than puma; jaguar took (in average) smallest preys, consequently, diets were significantly different. Puma preferred deer, brocket deer and paca as main prey; in contrast, jaguar preferred collared pecari, coati and armadillo. Both predator species presented a similar pattern in habitat usage, in which "highland forest" was used accordingly with its availability and puma avoided "lowland forest". About activity patterns, both were more active in the night time, however, puma was more variable in this aspect. Both species did not show segregation spatially or temporally. KEYWORDS: Felidae, Panthera onca, Puma concolor, coexistence, ecologic niche, Mayan forest, ecologic segregation.


2019 ◽  
Vol 25 (4) ◽  
pp. 423 ◽  
Author(s):  
Markus Gronwald ◽  
Quentin Genet ◽  
Margaux Touron

We used camera traps to identify invasive Rattus rattus as predators at a green sea turtle, Chelonia mydas, nest in French Polynesia. The footage shows that the hatchlings are a familiar food source for rats and that the control of invasive rats has to be considered for the protection of endangered green sea turtles.


2013 ◽  
Vol 79 (20) ◽  
pp. 6337-6344 ◽  
Author(s):  
Christopher Kilonzo ◽  
Xunde Li ◽  
Eduardo J. Vivas ◽  
Michele T. Jay-Russell ◽  
Kristine L. Fernandez ◽  
...  

ABSTRACTRecent outbreaks of food-borne illness associated with the consumption of produce have increased concern over wildlife reservoirs of food-borne pathogens. Wild rodents are ubiquitous, and those living close to agricultural farms may pose a food safety risk should they shed zoonotic microorganisms in their feces near or on agricultural commodities. Fecal samples from wild rodents trapped on 13 agricultural farms (9 produce, 3 cow-calf operations, and 1 beef cattle feedlot) in Monterey and San Benito Counties, CA, were screened to determine the prevalence and risk factors for shedding of several food-borne pathogens. Deer mice (Peromyscus maniculatus) were the most abundant rodent species trapped (72.5%).Cryptosporidiumspecies (26.0%) andGiardiaspecies (24.2%) were the predominant isolates from rodent feces, followed bySalmonella entericaserovars (2.9%) andEscherichia coliO157:H7 (0.2%). Rodent trap success was significantly associated with detection ofSalmonellain rodent feces, while farm type was associated with fecal shedding ofCryptosporidiumandGiardia. Seasonal shedding patterns were evident, with rodents trapped during the spring and summer months being significantly less likely to be sheddingCryptosporidiumoocysts than those trapped during autumn. Higher rodent species diversity tended to correlate with lower fecal microbial prevalence, and most spatiotemporal pathogen clusters involved deer mice. Rodents in the study area posed a minimal risk as environmental reservoirs ofE. coliO157:H7, but they may play a role in environmental dissemination ofSalmonellaand protozoa. Rodent control efforts that potentially reduce biodiversity may increase pathogen shedding, possibly through promotion of intraspecific microbial transmission.


1986 ◽  
Vol 96 (2) ◽  
pp. 171-183 ◽  
Author(s):  
A. J. Shepherd ◽  
P. A. Leman ◽  
D. E. Hummitzsch

SUMMARYSusceptibility studies were undertaken to determine the response of some South African wild rodent species to experimental plague (Yersinia pestis) infection.A degree of plague resistance was found in three gerbil species captured in the plague enzootic region of the northern Cape Province, these being the Namaqua gerbil, Desmodillus auricularis, (LD50 1 × 106 organisms), the bushveld gerbil, Tatera leucogaster, (LD50 9·1 × 105) and the highveld gerbil, T. brantsii (LD50 4 × 102). Animals from a population of the four-striped mouse, Rhabdomys pumilio, captured in the plague area of Port Elizabeth, proved moderately resistant to experimental plague infection (LD 50 1·3 × 104) while those from another population of the same species captured in a plague-free area of the Orange Free State were extremely susceptible (LD50, 5 organisms). The response of both populations however was a heterogeneous one. Marked differences in susceptibility were also found between two populations of multimammate mice, Mastomys natalensis (2n = 32) although both originated from areas outwith the known distribution of plague in southern Africa.The 50% infectious dose was relatively high in T. leucogaster (3·2 × 102) and D. auricularis (1·7 × 103), but was low (2–16 organisms) in the other rodent species tested.The plague antibody response, determined by enzyme-linked immunosorbent assay (ELISA), was extremely short-lived in T. leucogaster, only 10% of inoculated animals remaining seropositive at low titres after 11 weeks. Antibodies persisted for only slightly longer in the sera of T. brantsii which were reinoculated with 2 × 103 plague organisms 6 weeks after initial challenge.The demonstration of the existence of both susceptible and resistant populations of R. pumilio and M. natalensis indicates that these species must be considered as potential plague reservoir hosts in parts of South Africa.The results suggest that resistance to plague infection in previously epizootic hosts in the northern Cape Province such as Tatera sp. and D. auricularis has arisen through continual selective pressure of the organism. If the findings are applicable to gerbil populations in other plague enzootic regions of South Africa it is probable that acquired plague resistance has been responsible for the absence of gerbil epizootics and consequently for the dramatic decline in human plague outbreaks in South Africa since 1950.


ARCTIC ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 22-29
Author(s):  
Kevin G. Young ◽  
Lisa V. Kennedy ◽  
Paul A. Smith ◽  
Erica Nol

When monitoring the breeding ecology of birds, the causes and times of nest failure can be difficult to determine. Cameras placed near nests allow for accurate monitoring of nest fate, but their presence may increase the risk of predation by attracting predators, leading to biased results. The relative influence of cameras on nest predation risk may also depend on habitat because predator numbers or behaviour can change in response to the availability or accessibility of nests. We evaluated the impact of camera presence on the predation rate of artificial nests placed within mesic tundra habitats used by Arctic-breeding shorebirds. We deployed 94 artificial nests, half with cameras and half without, during the shorebird-nesting season of 2015 in the East Bay Migratory Bird Sanctuary, Nunavut. Artificial nests were distributed evenly across sedge meadow and supratidal habitats typically used by nesting shorebirds. We used the Cox proportional hazards model to assess differential nest survival in relation to camera presence, habitat type, placement date, and all potential interactions. Artificial nests with cameras did not experience higher predation risk than those without cameras. Predation risk of artificial nests was related to an interaction between habitat type and placement date. Nests deployed in sedge meadows and in supratidal habitats later in the season were subject to a higher risk of predation than those deployed in supratidal habitats early in the season. These differences in predation risk are likely driven by the foraging behaviour of Arctic fox (Vulpes lagopus), a species that accounted for 81% of observed predation events in this study. Arctic fox prey primarily on Arvicoline prey and goose eggs at this site and take shorebird nests opportunistically, perhaps more often later in the season when their preferred prey becomes scarcer. This study demonstrates that, at this site, cameras used for nest monitoring do not influence predation risk. Evaluating the impact of cameras on predation risk is critical prior to their use, as individual study areas may differ in terms of predator species and behaviour.


2018 ◽  
Vol 35 ◽  
pp. 1-8 ◽  
Author(s):  
Laís Ribeiro-Silva ◽  
Daniel Fernandes Perrella ◽  
Carlos Biagolini-Jr ◽  
Paulo Zima ◽  
Augusto J. Piratelli ◽  
...  

Identification of the predators of bird nests is essential to test ecological and evolutionary hypotheses and to make practical management decisions. A variety of nest monitoring devices have been proposed but many remain difficult to set up in the field. The aim of this study was to test camera traps as a potential tool to study predation of natural nests in a tropical rainforest environment. Specifically, we registered the predators, assessed their size range, and we compared the use of one and two cameras per nest. Of 122 nests from 24 bird species, 45 (37%) were depredated, and the cameras recorded the predator species in 29 of the total of depredated nests (64%). We identified predators in eight of 16 depredated nests (50%) in which we used one camera trap per nest, and we identified predators in 21 of 29 depredated nests (72%) when we used two camera traps per nest. The predators included six species of birds and six species of mammals, with body masses varying from 20 g to 16.5 kg. Causes for 10 of the 16 detection failures were identified and are discussed. These results suggest that camera traps are viable tools to investigate nest predation in a tropical rainforest area.


2018 ◽  
Vol 35 ◽  
pp. 1-8
Author(s):  
Laís Ribeiro-Silva ◽  
Daniel Fernandes Perrella ◽  
Carlos Biagolini-Jr ◽  
Paulo Zima ◽  
Augusto J. Piratelli ◽  
...  

Identification of the predators of bird nests is essential to test ecological and evolutionary hypotheses and to make practical management decisions. A variety of nest monitoring devices have been proposed but many remain difficult to set up in the field. The aim of this study was to test camera traps as a potential tool to study predation of natural nests in a tropical rainforest environment. Specifically, we registered the predators, assessed their size range, and we compared the use of one and two cameras per nest. Of 122 nests from 24 bird species, 45 (37%) were depredated, and the cameras recorded the predator species in 29 of the total of depredated nests (64%). We identified predators in eight of 16 depredated nests (50%) in which we used one camera trap per nest, and we identified predators in 21 of 29 depredated nests (72%) when we used two camera traps per nest. The predators included six species of birds and six species of mammals, with body masses varying from 20 g to 16.5 kg. Causes for 10 of the 16 detection failures were identified and are discussed. These results suggest that camera traps are viable tools to investigate nest predation in a tropical rainforest area.


Sign in / Sign up

Export Citation Format

Share Document