scholarly journals Using PRRSV-Resilient Sows Improve Performance in Endemic Infected Farms with Recurrent Outbreaks

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 740
Author(s):  
Gloria Abella ◽  
Adela Pagès-Bernaus ◽  
Joan Estany ◽  
Ramona Natacha Pena ◽  
Lorenzo Fraile ◽  
...  

The selection of porcine reproductive and respiratory syndrome (PRRS) resilient sows has been proposed as a strategy to control this disease. A discrete event-based simulation model was developed to mimic the outcome of farms with resilient or susceptible sows suffering recurrent PRRSV outbreaks. Records of both phenotypes were registered in a PRRSV-positive farm of 1500 sows during three years. The information was split in the whole period of observation to include a PRRSV outbreak that lasted 24 weeks (endemic/epidemic or En/Ep) or only the endemic phase (En). Twenty simulations were modeled for each farm: Resilient/En, Resilient/En_Ep, Susceptible/En, and Susceptible/En_Ep during twelve years and analyzed for the productive performance and economic outcome, using reference values. The reproductive parameters were generally better for resilient than for susceptible sows in the PRRSV En/Ep scenario, and the contrary was observed in the endemic case. The piglet production cost was always lower for resilient than for susceptible sows but showed only significant differences in the PRRSV En/Ep scenario. Finally, the annual gross margin by sow is significantly better for resilient than for susceptible sows for the PRRSV endemic (12%) and endemic/epidemic scenarios (17%). Thus, the selection of PRRSV resilient sows is a profitable approach for producers to improve disease control.

SIMULATION ◽  
2016 ◽  
Vol 92 (12) ◽  
pp. 1065-1086 ◽  
Author(s):  
Richard J Zamora ◽  
Arthur F Voter ◽  
Danny Perez ◽  
Nandakishore Santhi ◽  
Susan M Mniszewski ◽  
...  

Due to its unrivaled ability to predict the dynamical evolution of interacting atoms, molecular dynamics (MD) is a widely used computational method in theoretical chemistry, physics, biology, and engineering. Despite its success, MD is only capable of modeling timescales within several orders of magnitude of thermal vibrations, leaving out many important phenomena that occur at slower rates. The temperature-accelerated dynamics (TAD) method overcomes this limitation by thermally accelerating the state-to-state evolution captured by MD. Due to the algorithmically complex nature of the serial TAD procedure, implementations have yet to improve performance by parallelizing the concurrent exploration of multiple states. Here we utilize a discrete-event-based application simulator to introduce and explore a new speculatively parallel TAD (SpecTAD) method. We investigate the SpecTAD algorithm, without a full-scale implementation, by constructing an application simulator proxy (SpecTADSim). Following this method, we discover that a non-trivial relationship exists between the optimal SpecTAD parameter set and the number of CPU cores available at run-time. Furthermore, we find that a majority of the available SpecTAD boost can be achieved within an existing TAD application using relatively simple algorithm modifications.


2020 ◽  
Vol 19 (3) ◽  
pp. 375-386
Author(s):  
G. A. Amorim ◽  
L. A. S. Lopes ◽  
O. S. Silva Junior

2020 ◽  
Vol 67 (3) ◽  
pp. 582-592
Author(s):  
Abhijit Gosavi ◽  
Giacomo Fraioli ◽  
Lesley H. Sneed ◽  
Nathaniel Tasker

2019 ◽  
Vol 2 (5) ◽  
Author(s):  
Mengda Zhang ◽  
Chenjing Zhou ◽  
Tian-tian Zhang ◽  
Yan Han

Selecting check index quantitatively is the core of the calibration of micro traffic simulation parameters at signal intersection. Five indexes in the node (intersection) module of VISSIM were selected as the check index set. Twelve simulation parameters in the core module were selected as the simulation parameters set. Optimal process of parameter calibration was proposed and model of the intersection of Huangcun west street and Xinghua street in Beijing was built in VISSIM to verify it. The sensitivity analysis between each check index and simulation parameter in their own set was conducted respectively. Sensitive parameter sets of different check indices were obtained and compared. The results show that different indexes have different size of set, and average vehicle delay's is maximum, so it's necessary to select index quantitatively. The results can provide references for scientific selection of the check indexes and improve the study efficiency of parameter calibration.


Author(s):  
Dandan Li ◽  
Zhiqiang Zuo ◽  
Yijing Wang

Using an event-based switching law, we address the stability issue for continuous-time switched affine systems in the network environment. The state-dependent switching law in terms of the region function is firstly developed. We combine the region function with the event-triggering mechanism to construct the switching law. This can provide more candidates for the selection of the next activated subsystem at each switching instant. As a result, it is possible for us to activate the appropriate subsystem to avoid the sliding motion. The Zeno behavior for the switched affine system can be naturally ruled out by guaranteeing a positive minimum inter-event time between two consecutive executions of the event-triggering threshold. Finally, two numerical examples are given to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document