scholarly journals In Vitro Protein Disappearance of Raw Chicken as Dog Foods Decreased by Thermal Processing, but Was Unaffected by Non-Thermal Processing

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1256
Author(s):  
Hansol Kim ◽  
Ah Hyun Jung ◽  
Sung Hee Park ◽  
Yohan Yoon ◽  
Beob Gyun Kim

The objectives of the present study were to determine the influence of thermal and non-thermal processing procedures on in vitro ileal disappearance (IVID) of dry matter (DM) and crude protein (CP) in chicken meat as dog foods using 2-step in vitro assays. In thermal processing experiments, IVID of DM and CP in chicken meat thermally processed at 70, 90, and 121 °C, respectively, with increasing processing time was determined. For non-thermal processing experiments, IVID of DM and CP in chicken meat processed by high-pressure, ultraviolet-light emitting diode (UV-LED), electron-beam, and gamma-ray was determined. Thermal processing of chicken meat at 70, 90, and 121 °C resulted in decreased IVID of CP (p < 0.05) as heating time increased. In non-thermal processing experiment, IVID of CP in chicken meat was not affected by high-pressure processing or UV-LED radiation. In vitro ileal disappearance of CP in electron-beam- or gamma-ray-irradiated chicken meat was not affected by the irradiation intensity. Taken together, ileal protein digestibility of chicken meat for dogs is decreased by thermal processing, but is minimally affected by non-thermal processing methods.

LWT ◽  
2017 ◽  
Vol 75 ◽  
pp. 85-92 ◽  
Author(s):  
Junjie Yi ◽  
Biniam T. Kebede ◽  
Doan Ngoc Hai Dang ◽  
Carolien Buvé ◽  
Tara Grauwet ◽  
...  

Food Control ◽  
2021 ◽  
pp. 108791
Author(s):  
M.E. Alañón ◽  
M.L. Cádiz-Gurrea ◽  
R. Oliver-Simancas ◽  
F.J. Leyva-Jiménez ◽  
D. Arráez-Román ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Netsanet Shiferaw Terefe ◽  
Gabriele A. Netzel ◽  
Michael E. Netzel

This study investigated the impact of copigmentation with sinapic acid on the stability of anthocyanins in strawberry purees of three commercial cultivars (Camarosa, Rubygem, and Festival) after high-pressure processing (HPP; 600 MPa/5 min) and thermal processing (TP; 88°C/2 min) and during three months of refrigerated storage. Copigmentation did not have a significant effect on the stability of anthocyanins during processing with 14% to 30% degradation observed with no significant difference among cultivars or the processing technique. On the contrary, copigmentation significantly (p<0.05) improved the stability of anthocyanins in HPP samples during storage, most probably via the formation of intramolecular complexes which improve the resistance of anthocyanins to degradation. The anthocyanin contents of the copigmented HPP Camarosa, Rubygem, and Festival samples were, respectively, 42%, 40%, and 33% higher than their noncopigmented counterparts at the end of the three-month storage. Copigmentation also improved the retention of the total antioxidant capacity of the HPP-processed strawberry samples. The TPC of the copigmented HPP Camarosa, Rubygem, and Festival samples was, respectively, 66%, 65%, and 85% higher than that of the non-copigmented samples after three months of storage, whereas the respective ORAC values were 36.5%, 59.3%, and 35.3% higher. In contrast, copigmentation did not improve the stability of anthocyanins in TP samples, although significant (p<0.05) improvement in antioxidant capacity was also observed in TP samples due to the antioxidant nature of the copigment.


Sign in / Sign up

Export Citation Format

Share Document