scholarly journals Phycoerythrin from Colaconema sp. Has Immunostimulatory Effects on the Whiteleg Shrimp Litopenaeus vannamei and Increases Resistance to Vibrio parahaemolyticus and White Spot Syndrome Virus

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2371
Author(s):  
Po-Tsang Lee ◽  
Jing Huang ◽  
Chin-Yi Huang ◽  
Zi-Xuan Liu ◽  
Han-Yang Yeh ◽  
...  

We investigated whether phycoerythrin (PE), a pigment sourced from marine algae, could act as an immunomodulatory agent in whiteleg shrimp (Litopenaeus vannamei). To this end, PE was extracted and purified from a PE-rich macroalgae, Colaconema sp. Our in vitro analysis demonstrated that PE enhanced prophenoloxidase and phagocytosis activity but inhibited the production of reactive oxygen species in hemocytes. Additionally, the PE signal could be detected using an in vivo imaging system after its injection into the ventral sinus of the cephalothorax of whiteleg shrimp. The expression profiles of fourteen immune-related genes were monitored in hemocytes from whiteleg shrimp injected with 0.30 μg of PE per gram of body weight, and crustin, lysozyme, penaiedin 4, and anti-lipopolysaccharide factor showed up-regulated post-stimulation. The induction of immune genes and enhancement of innate immune parameters by PE may explain the higher survival rates for shrimp that received different doses of PE prior to being challenged with Vibrio parahaemolyticus or white spot syndrome virus compared to controls. Combined, these results show that PE from Colaconema sp. can differentially stimulate the immune response of whiteleg shrimp in vitro and in vivo and could potentially be used as an immunomodulator in shrimp culture.

2020 ◽  
Vol 21 (4) ◽  
pp. 1243
Author(s):  
Heqian Zhang ◽  
Wenzhi Cheng ◽  
Jinbin Zheng ◽  
Panpan Wang ◽  
Qinghui Liu ◽  
...  

Kuruma prawn, Marsupenaeus japonicus, has the third largest annual yield among shrimp species with vital economic significance in China. White spot syndrome virus (WSSV) is a great threat to the global shrimp farming industry and results in high mortality. Pellino, a highly conserved E3 ubiquitin ligase, has been found to be an important modulator of the Toll-like receptor (TLR) signaling pathways that participate in the innate immune response and ubiquitination. In the present study, the Pellino gene from Marsupenaeus japonicus was identified. A qRT-PCR assay showed the presence of MjPellino in all the tested tissues and revealed that the transcript level of this gene was significantly upregulated in both the gills and hemocytes after challenge with WSSV and Vibrio parahaemolyticus. The function of MjPellino was further verified at the protein level. The results of the three-dimensional modeling and protein–protein docking analyses and a GST pull-down assay revealed that the MjPellino protein was able to bind to the WSSV envelope protein VP26. In addition, the knockdown of MjPellino in vivo significantly decreased the expression of MjAMPs. These results suggest that MjPellino might play an important role in the immune response of kuruma prawn.


2006 ◽  
Vol 80 (8) ◽  
pp. 3884-3892 ◽  
Author(s):  
Fang He ◽  
Beau J. Fenner ◽  
Andrew K. Godwin ◽  
Jimmy Kwang

ABSTRACT We have characterized a white spot syndrome virus (WSSV) RING-H2-type protein, WSSV222, which is involved in ubiquitination. WSSV222 exhibits RING-H2-dependent E3 ligase activity in vitro in the presence of the specific conjugating enzyme UbcH6. Mutations in the RING-H2 domain abolished WSSV222-dependent ubiquitination, revealing the importance of this domain in WSSV222 function. Yeast two-hybrid and pull-down analyses revealed that WSSV222 interacts with a shrimp tumor suppressor-like protein (TSL) sharing 60% identity with human OVCA1. To better characterize the interaction of WSSV222 and TSL in vivo, we established a stable TSL-expressing cell line derived from the human ovarian cancer cell line A2780, where we observed a TSL-dependent prolonged G1 phase. Furthermore, we detected WSSV222-mediated ubiquitination and MG132-sensitive degradation of TSL both in shrimp primary cell culture and in the TSL-expressing cell line. Transient expression of TSL in BHK cells leads to apoptosis, which was rescued by WSSV222. Taken together, our data suggest that WSSV222 acts as an antiapoptosis protein by ubiquitin-mediated proteolysis of TSL to ensure successful WSSV replication in shrimp.


2010 ◽  
Vol 84 (20) ◽  
pp. 10844-10851 ◽  
Author(s):  
Apiruck Watthanasurorot ◽  
Pikul Jiravanichpaisal ◽  
Irene Söderhäll ◽  
Kenneth Söderhäll

ABSTRACT The gC1qR/p32 protein is a multiple receptor for several proteins and pathogens. We cloned a gC1qR homologue in a crustacean, Pacifastacus leniusculus, and analyzed the expression of P. leniusculus C1qR (PlgC1qR) in various tissues. The gC1qR/p32 transcript was significantly enhanced by white spot syndrome virus (WSSV) infection 6 h after viral infection both in vitro in a hematopoietic tissue cell culture (Hpt) and in vivo compared to appropriate controls. Moreover, PlgC1qR silencing in both the Hpt cell culture and live crayfish enhanced the WSSV replication. In addition, by making a recombinant PlgC1qR protein we could show that if this recombinant protein was injected in a crayfish, Pacifastacus leniusculus, followed by injection of WSSV, this significantly reduced viral replication in vivo. Furthermore, if the recombinant PlgC1qR was incubated with Hpt cells and then WSSV was added, this also reduced viral replication. These experiments clearly demonstrate that recombinant PlgC1qR reduce WSSV replication both in vivo and in vitro. The results from a far-Western overlay and glutathione S-transferase pull-down assays showed that PlgC1qR could bind to VP15, VP26, and VP28. Altogether, these results demonstrate a role for PlgC1qR in antiviral activity against WSSV.


Aquaculture ◽  
2016 ◽  
Vol 465 ◽  
pp. 60-64 ◽  
Author(s):  
José Vladimir Trejo-Flores ◽  
Antonio Luna-González ◽  
Píndaro Álvarez-Ruíz ◽  
Ruth Escamilla-Montes ◽  
Viridiana Peraza-Gómez ◽  
...  

2007 ◽  
Vol 29 (1) ◽  
pp. 44-56 ◽  
Author(s):  
Javier Robalino ◽  
Jonas S. Almeida ◽  
David McKillen ◽  
Joan Colglazier ◽  
Harold F. Trent ◽  
...  

Infectious disease constitutes a major obstacle to the sustainability of shrimp aquaculture worldwide and a significant threat to natural populations of shrimp and other crustacea. The study of the shrimp immune system, including the response to viral infection, has been hampered by a relative lack of molecular genetic information and of tools suitable for high-throughput assessment of gene expression. In this report, the generation of a cDNA microarray encompassing 2,469 putative unigenes expressed in gills, circulating hemocytes, and hepatopancreas of Litopenaeus vannamei is described. The unigenes printed on the microarray were derived from the analyses of 7,021 expressed sequence tags obtained from standard cDNA libraries as well as from libraries generated by suppression subtractive hybridization, after challenging shrimp with a variety of immune stimuli. The general utility of the cDNA microarray was demonstrated by interrogating the array with labeled RNA from four different shrimp tissues (gills, hemocytes, hepatopancreas, and muscle) and by analyzing the transcriptomic response of shrimp to a lethal challenge with white spot syndrome virus. Our results indicate that white spot syndrome virus infection upregulates (in the hepatopancreas) genes encoding known and potential antimicrobial effectors, while some genes involved in protection from oxidative stress were found to be downregulated by the virus.


Sign in / Sign up

Export Citation Format

Share Document