scholarly journals Detoxification, Hydrogen Sulphide Metabolism and Wound Healing Are the Main Functions That Differentiate Caecum Protein Expression from Ileum of Week-Old Chicken

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3155
Author(s):  
Jiri Volf ◽  
Jana Rajova ◽  
Vladimir Babak ◽  
Zuzana Seidlerova ◽  
Ivan Rychlik

Sections of chicken gut differ in many aspects, e.g., the passage of digesta (continuous vs. discontinuous), the concentration of oxygen, and the density of colonising microbiota. Using an unbiased LC-MS/MS protocol, we compared protein expression in 18 ileal and 57 caecal tissue samples that originated from 7-day old ISA brown chickens. We found that proteins specific to the ileum were either structural (e.g., 3 actin isoforms, villin, or myosin 1A), or those required for nutrient digestion (e.g., sucrose isomaltase, maltase–glucoamylase, peptidase D) and absorption (e.g., fatty acid-binding protein 2 and 6 or bile acid–CoA:amino acid N-acyltransferase). On the other hand, proteins characteristic of the caecum were involved in sensing and limiting the consequences of oxidative stress (e.g., thioredoxin, peroxiredoxin 6), cell adhesion, and motility associated with wound healing (e.g., fibronectin 1, desmoyokin). These mechanisms are coupled with the activation of mechanisms suppressing the inflammatory response (galectin 1). Rather prominent were also expressions of proteins linked to hydrogen sulphide metabolism in caecum represented by cystathionin beta synthase, selenium-binding protein 1, mercaptopyruvate sulphurtransferase, and thiosulphate sulphurtransferase. Higher mRNA expression of nuclear factor, erythroid 2-like 2, the main oxidative stress transcriptional factor in caecum, further supported our observations.

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 110
Author(s):  
Yifei Wang ◽  
Yasuharu Shinoda ◽  
An Cheng ◽  
Ichiro Kawahata ◽  
Kohji Fukunaga

The accumulation of α-synuclein (αSyn) has been implicated as a causal factor in the pathogenesis of Parkinson’s disease (PD). There is growing evidence that supports mitochondrial dysfunction as a potential primary cause of dopaminergic neuronal death in PD. Here, we focused on reciprocal interactions between αSyn aggregation and mitochondrial injury induced by oxidative stress. We further investigated whether epidermal fatty acid-binding protein 5 (FABP5) is related to αSyn oligomerization/aggregation and subsequent disturbances in mitochondrial function in neuronal cells. In the presence of rotenone, a mitochondrial respiratory chain complex I inhibitor, co-overexpression of FABP5 with αSyn significantly decreased the viability of Neuro-2A cells compared to that of αSyn alone. Under these conditions, FABP5 co-localized with αSyn in the mitochondria, thereby reducing mitochondrial membrane potential. Furthermore, we confirmed that pharmacological inhibition of FABP5 by its ligand prevented αSyn accumulation in mitochondria, which led to cell death rescue. These results suggested that FABP5 is crucial for mitochondrial dysfunction related to αSyn oligomerization/aggregation in the mitochondria induced by oxidative stress in neurons.


1998 ◽  
Vol 32 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Robert S. Chapkin ◽  
Amy E. Clark ◽  
Laurie A. Davidson ◽  
Friedhelm Schroeder ◽  
Debra L. Zoran ◽  
...  

2018 ◽  
Vol 38 (Suppl_1) ◽  
Author(s):  
Anna Boniakowski ◽  
Andrew Kimball ◽  
Frank Davis ◽  
Amrita Joshi ◽  
Matt Schaller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document