scholarly journals The Oligopeptide Permease Opp Mediates Illicit Transport of the Bacterial P-site Decoding Inhibitor GE81112

Antibiotics ◽  
2016 ◽  
Vol 5 (2) ◽  
pp. 17 ◽  
Author(s):  
Alessandro Maio ◽  
Letizia Brandi ◽  
Stefano Donadio ◽  
Claudio Gualerzi
2019 ◽  
Vol 112 (1) ◽  
pp. 219-232 ◽  
Author(s):  
Thomas Dubois ◽  
Christelle Lemy ◽  
Stéphane Perchat ◽  
Didier Lereclus

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Pablo M. R. O. Moraes ◽  
Nubia Seyffert ◽  
Wanderson M. Silva ◽  
Thiago L. P. Castro ◽  
Renata F. Silva ◽  
...  

Despite the economic importance of caseous lymphadenitis (CLA), a chronic disease caused byCorynebacterium pseudotuberculosis, few genes related to the virulence of its etiologic agent have been characterized. The oligopeptide permease (Opp) transporters are located in the plasma membrane and have functions generally related to the uptake of peptides from the extracellular environment. These peptide transporters, in addition to having an important role in cell nutrition, also participate in the regulation of various processes involving intercellular signaling, including the control of the expression of virulence genes in pathogenic bacteria. To study the role of Opp inC. pseudotuberculosis, an OppD deficient strain was constructed via simple crossover with a nonreplicative plasmid carrying part of theoppDgene sequence. As occurred to the wild-type, the ΔoppDstrain showed impaired growth when exposed to the toxic glutathione peptide (GSH), indicating two possible scenarios: (i) that this component can be internalized by the bacterium through an Opp-independent pathway or (ii) that there is toxicity while the peptide is extracellular. Additionally, the ΔoppDmutant presented a reduced ability to adhere to and infect macrophages compared to the wild-type, although both strains exhibit the same potential to colonize spleens and cause injury and death to infected mice.


2000 ◽  
Vol 68 (2) ◽  
pp. 429-436 ◽  
Author(s):  
Renee M. Green ◽  
Anjali Seth ◽  
Nancy D. Connell

ABSTRACT Oligopeptides play important roles in bacterial nutrition and signaling. Using sequences from the available genome database forMycobacterium tuberculosis H37Rv, the oligopeptide permease operon (oppBCDA) of Mycobacterium bovis BCG was cloned from a cosmid library. An opp mutant strain was constructed by homologous recombination with an allele ofoppD interrupted by kanamycin and streptomycin resistance markers. The deletion was complemented with a wild-type copy of theopp operon. Two approaches were taken to characterize the peptide transporter defect in this mutant strain. First, growth of wild-type and mutant strains was monitored in media containing a wide variety of peptides as sole source of carbon and/or nitrogen. Among 25 peptides ranging from two to six amino acids in length, none was capable of supporting measurable growth as the sole carbon source in either wild-type or mutant strains. The second approach exploited the resistance of permease mutants to toxic substrates. The tripeptide glutathione (γ-glutamyl-l-cyteinylglycine [GSH]) is toxic to wild-type BCG and was used successfully to characterize peptide uptake in the opp mutant. In 2 mM GSH, growth of the wild-type strain is inhibited, whereas the opp mutant is resistant to concentrations as high as 10 mM. Similar results were found with the tripeptide S-nitrosoglutathione (GSNO), thought to be a donor of NO in mammalian cells. Using incorporation of [3H]uracil to monitor the effects of GSH and GSNO on macromolecular synthesis in growing cells, it was demonstrated that theopp mutant is resistant, whereas the wild type and the mutant complemented with a wild-type copy of the operon are sensitive to both tripeptides. In uptake measurements, incorporation of [3H]GSH is reduced in the mutant compared with wild type and the complemented mutant. Finally, growth of the three strains in the tripeptides suggests that GSH is bacteriostatic, whereas GSNO is bacteriocidal.


2007 ◽  
Vol 189 (22) ◽  
pp. 8215-8223 ◽  
Author(s):  
Tung-Kung Wu ◽  
Yu-Kuo Wang ◽  
Yi-Chin Chen ◽  
Jen-Min Feng ◽  
Yen-Hsi Liu ◽  
...  

ABSTRACT We describe purification and characterization of an oligopeptide permease protein (Hly-OppA) from Vibrio furnissii that has multifaceted functions in solute binding, in in vitro hemolysis, in antibiotic resistance, and as a virulence factor in bacterial pathogenesis. The solute-binding function was revealed by N-terminal and internal peptide sequences of the purified protein and was confirmed by discernible effects on oligopeptide binding, by accumulation of fluorescent substrates, and by fluorescent substrate-antibiotic competition assay experiments. The purified protein exhibited host-specific in vitro hemolytic activity against various mammalian erythrocytes and apparent cytotoxicity in CHO-K1 cells. Recombinant Hly-OppA protein and an anti-Hly-OppA monoclonal antibody exhibited and neutralized the in vitro hemolytic activity, respectively, which further confirmed the hemolytic activity of the gene product. In addition, a V. furnissii hly-oppA knockout mutant caused less mortality than the wild-type strain when it was inoculated into BALB/c mice, indicating the virulence function of this protein. Finally, the in vitro hemolytic activity was also confirmed with homologous ATP-binding cassette-type transporter proteins from other Vibrio species.


2009 ◽  
Vol 75 (10) ◽  
pp. 3355-3357 ◽  
Author(s):  
Elise Borez�e-Durant ◽  
Aurelia Hiron ◽  
Jean-Christophe Piard ◽  
Vincent Juillard

ABSTRACT Staphylococcus aureus RN6390 presents a diauxic growth in milk, due to amino acid limitation. Inactivation of the oligopeptide permease Opp3 (dedicated to the nitrogen nutrition of the strain) not only affects the growth of the strain but also results in reduced expression levels of three major extracellular proteases.


2011 ◽  
Vol 79 (8) ◽  
pp. 3407-3420 ◽  
Author(s):  
B. V. Subba Raju ◽  
Maria D. Esteve-Gassent ◽  
S. L. Rajasekhar Karna ◽  
Christine L. Miller ◽  
Tricia A. Van Laar ◽  
...  

ABSTRACTBorrelia burgdorferi, the agent of Lyme disease, undergoes rapid adaptive gene expression in response to signals unique to its arthropod vector or vertebrate hosts. Among the upregulated genes under vertebrate host conditions is one of the five annotated homologs of oligopeptide permease A (OppA5, BBA34). A mutant lackingoppA5was constructed in an lp25-deficient isolate ofB. burgdorferistrain B31, and the minimal regions of infectivity were restored via a shuttle vector pBBE22 with or without an intact copy ofbba34. Immunoblot analysis of thebba34mutant revealed a reduction in the levels of RpoS, BosR, and CsrABbwith a concomitant reduction in the levels of OspC, DbpA, BBK32, and BBA64. There were no changes in the levels of OspA, NapA, P66, and three other OppA orthologs. Quantitative transcriptional analysis correlated with the changes in the protein levels. However, thebba34mutant displayed comparable infectivities in the C3H/HeN mice and the wild-type strain, despite the reduction in several pathogenesis-related proteins. Supplementation of the growth medium with increased levels of select components, notably sodium acetate and sodium bicarbonate, restored the levels of several proteins in thebba34mutant to wild-type levels. We speculate that the transport of acetate appears to contribute to the accumulation of key metabolites, like acetyl phosphate, that facilitate the adaptation ofB. burgdorferito the vertebrate host by the activation of the Rrp2-RpoN-RpoS pathway. These studies underscore the importance of solute transport to host-specific adaptation ofB. burgdorferi.


2004 ◽  
Vol 48 (5) ◽  
pp. 354-359 ◽  
Author(s):  
Alexandre Moutran ◽  
Ronaldo Bento Quaggio ◽  
Andrea Balan ◽  
Luis Carlos de Souza Ferreira ◽  
Rita de C�ssia Caf� Ferreira

Sign in / Sign up

Export Citation Format

Share Document