scholarly journals Involvement of RAGE and Oxidative Stress in Inflammatory and Infectious Skin Diseases

Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 82
Author(s):  
Fabrizio Guarneri ◽  
Paolo Custurone ◽  
Valeria Papaianni ◽  
Sebastiano Gangemi

The surface receptor for advanced glycosylation end-products (RAGE) and its soluble (sRAGE) and endogenous secretory (EN-RAGE) forms belong to the superfamily of toll-like receptors and play important roles in inflammation and autoimmunity, directly or through binding with advanced glycosylation end-products (AGE) and advanced oxidation protein products (AOPP). We reviewed the literature on the role of RAGE in skin diseases. Research in this field is still rather limited (28 articles) but suggests the involvement of RAGE and RAGE-related pathways in chronic inflammatory diseases (lupus, psoriasis, atopic dermatitis, and lichen planus), infectious diseases (leprosy, Staphylococcus aureus-induced skin lesions), alterations of the repairing processes in diabetic skin, systemic sclerosis, and ulcers. These data prompt further research in this field, which not only will be useful to better understand the pathogenetic mechanisms of diseases, but is also likely to have intriguing clinical implications. Indeed, when their role in the complex and multifactorial inflammatory balance will be adequately defined, RAGE and related molecules could be used as markers of disease severity and/or response to treatment. Moreover, future promising therapeutic perspectives could be topical administration of some of these molecules (e.g., sRAGE) to modulate local inflammatory response and/or the development of anti-RAGE antibodies for systemic treatment.

2014 ◽  
Vol 37 (4) ◽  
pp. 588-596 ◽  
Author(s):  
Yuichi Miki ◽  
Hikaru Dambara ◽  
Yoshihiro Tachibana ◽  
Kazuya Hirano ◽  
Mio Konishi ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 619-628
Author(s):  
Chen Yuan ◽  
Ya Mo ◽  
Jie Yang ◽  
Mei Zhang ◽  
Xuejun Xie

AbstractAdvanced glycosylation end products (AGEs) are harmful factors that can damage the inner blood–retinal barrier (iBRB). Rat retinal microvascular endothelial cells (RMECs) were isolated and cultured, and identified by anti-CD31 and von Willebrand factor polyclonal antibodies. Similarly, rat retinal Müller glial cells (RMGCs) were identified by H&E staining and with antibodies of glial fibrillary acidic protein and glutamine synthetase. The transepithelial electrical resistance (TEER) value was measured with a Millicell electrical resistance system to observe the leakage of the barrier. Transwell cell plates for co-culturing RMECs with RMGCs were used to construct an iBRB model, which was then tested with the addition of AGEs at final concentrations of 50 and 100 mg/L for 24, 48, and 72 h. AGEs in the in vitro iBRB model constructed by RMEC and RMGC co-culture led to the imbalance of the vascular endothelial growth factor (VEGF) and pigment epithelial derivative factor (PEDF), and the permeability of the RMEC layer increased because the TEER decreased in a dose- and time-dependent manner. AGEs increased VEGF but lowered PEDF in a dose- and time-dependent manner. The intervention with AGEs led to the change of the transendothelial resistance of the RMEC layer likely caused by the increased ratio of VEGF/PEDF.


1991 ◽  
Vol 325 (12) ◽  
pp. 836-842 ◽  
Author(s):  
Zenji Makita ◽  
Steven Radoff ◽  
Elliot J. Rayfield ◽  
Zhi Yang ◽  
Edward Skolnik ◽  
...  

1995 ◽  
Vol 48 (1) ◽  
pp. 111-117 ◽  
Author(s):  
Douglas C. Throckmorton ◽  
Anne P. Brogden ◽  
Brian Min ◽  
Howard Rasmussen ◽  
Michael Kashgarian

2010 ◽  
pp. P2-575-P2-575
Author(s):  
CV Quintanilla-Garcia ◽  
ME Garay-Sevilla ◽  
G Barbosa-Sabanero ◽  
K Wrobel-Zasada ◽  
C Rodriguez-Flores ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document