scholarly journals Structural and Biochemical Insights into the Reactivity of Thioredoxin h1 from Chlamydomonas reinhardtii

Antioxidants ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Christophe H. Marchand ◽  
Simona Fermani ◽  
Jacopo Rossi ◽  
Libero Gurrieri ◽  
Daniele Tedesco ◽  
...  

Thioredoxins (TRXs) are major protein disulfide reductases of the cell. Their redox activity relies on a conserved Trp-Cys-(Gly/Pro)-Pro-Cys active site bearing two cysteine (Cys) residues that can be found either as free thiols (reduced TRXs) or linked together by a disulfide bond (oxidized TRXs) during the catalytic cycle. Their reactivity is crucial for TRX activity, and depends on the active site microenvironment. Here, we solved and compared the 3D structure of reduced and oxidized TRX h1 from Chlamydomonas reinhardtii (CrTRXh1). The three-dimensional structure was also determined for mutants of each active site Cys. Structural alignments of CrTRXh1 with other structurally solved plant TRXs showed a common spatial fold, despite the low sequence identity. Structural analyses of CrTRXh1 revealed that the protein adopts an identical conformation independently from its redox state. Treatment with iodoacetamide (IAM), a Cys alkylating agent, resulted in a rapid and pH-dependent inactivation of CrTRXh1. Starting from fully reduced CrTRXh1, we determined the acid dissociation constant (pKa) of each active site Cys by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analyses coupled to differential IAM-based alkylation. Based on the diversity of catalytic Cys deprotonation states, the mechanisms and structural features underlying disulfide redox activity are discussed.

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
A.E. Naas ◽  
A.K. MacKenzie ◽  
B. Dalhus ◽  
V.G.H. Eijsink ◽  
P.B. Pope

Abstract Previous gene-centric analysis of a cow rumen metagenome revealed the first potentially cellulolytic polysaccharide utilization locus, of which the main catalytic enzyme (AC2aCel5A) was identified as a glycoside hydrolase (GH) family 5 endo-cellulase. Here we present the 1.8 Å three-dimensional structure of AC2aCel5A and characterization of its enzymatic activities. The enzyme possesses the archetypical (β/α)8-barrel found throughout the GH5 family and contains the two strictly conserved catalytic glutamates located at the C-terminal ends of β-strands 4 and 7. The enzyme is active on insoluble cellulose and acts exclusively on linear β-(1,4)-linked glucans. Co-crystallization of a catalytically inactive mutant with substrate yielded a 2.4 Å structure showing cellotriose bound in the −3 to −1 subsites. Additional electron density was observed between Trp178 and Trp254, two residues that form a hydrophobic “clamp”, potentially interacting with sugars at the +1 and +2 subsites. The enzyme’s active-site cleft was narrower compared to the closest structural relatives, which in contrast to AC2aCel5A, are also active on xylans, mannans and/or xyloglucans. Interestingly, the structure and function of this enzyme seem adapted to less-substituted substrates such as cellulose, presumably due to the insufficient space to accommodate the side-chains of branched glucans in the active-site cleft.


2020 ◽  
Vol 13 (636) ◽  
pp. eaaz5599 ◽  
Author(s):  
Kelan Chen ◽  
Richard W. Birkinshaw ◽  
Alexandra D. Gurzau ◽  
Iromi Wanigasuriya ◽  
Ruoyun Wang ◽  
...  

Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) is an epigenetic regulator in which polymorphisms cause the human developmental disorder, Bosma arhinia micropthalmia syndrome, and the degenerative disease, facioscapulohumeral muscular dystrophy. SMCHD1 is considered a noncanonical SMC family member because its hinge domain is C-terminal, because it homodimerizes rather than heterodimerizes, and because SMCHD1 contains a GHKL-type, rather than an ABC-type ATPase domain at its N terminus. The hinge domain has been previously implicated in chromatin association; however, the underlying mechanism involved and the basis for SMCHD1 homodimerization are unclear. Here, we used x-ray crystallography to solve the three-dimensional structure of the Smchd1 hinge domain. Together with structure-guided mutagenesis, we defined structural features of the hinge domain that participated in homodimerization and nucleic acid binding, and we identified a functional hotspot required for chromatin localization in cells. This structure provides a template for interpreting the mechanism by which patient polymorphisms within the SMCHD1 hinge domain could compromise function and lead to facioscapulohumeral muscular dystrophy.


2015 ◽  
Vol 13 ◽  
pp. 34
Author(s):  
J. K.S. NASCIMENTO et al

Teaching biochemistry in higher education is increasingly becoming a challenge. It is notoriously difficult for students to assimilate the topic; in addition there are many complaints about the complexity of subjects and a lack of integration with the day-to-day. A recurrent problem in undergraduate courses is the absence of teaching practice in specific disciplines. This work aimed to stimulate students in the biological sciences course who were enrolled in the discipline of MOLECULAR DIVERSITY (MD), to create hypothetical classes focused on basic education highlighting the proteins topic. The methodology was applied in a class that contained 35 students. Seven groups were formed, and each group chose a protein to be used as a source of study for elementary school classes. A lesson plan was created focusing on the methodology that the group would use to manage a class. The class was to be presented orally. Students were induced to be creative and incorporate a teacher figure, and to propose teaching methodologies for research using the CTS approach (Science, Technology and Society). Each group presented a three-dimensional structure of the protein they had chosen, explained their structural features and functions and how they would develop the theme for a class of basic education, and what kind of methodology they would use for this purpose. At the end of the presentations, a questionnaire was given to students in order to evaluate the effectiveness of the methodology in the teaching-learning process. The activity improved the teacher’s training and developed skills and abilities, such as creativity, didactical planning, teaching ability, development of educational models and the use of new technologies. The methodology used in this work was extremely important to the training of future teachers, who were able to better understand the content covered in the discipline and relate it to day-to-day life.


2018 ◽  
Author(s):  
David J Winter ◽  
Austen RD Ganley ◽  
Carolyn A Young ◽  
Ivan Liachko ◽  
Christopher L Schardl ◽  
...  

AbstractStructural features of genomes, including the three-dimensional arrangement of DNA in the nucleus, are increasingly seen as key contributors to the regulation of gene expression. However, studies on how genome structure and nuclear organization influence transcription have so far been limited to a handful of model species. This narrow focus limits our ability to draw general conclusions about the ways in which three-dimensional structures are encoded, and to integrate information from three-dimensional data to address a broader gamut of biological questions. Here, we generate a complete and gapless genome sequence for the filamentous fungus,Epichloë festucae. Coupling it with RNAseq and HiC data, we investigate how the structure of the genome contributes to the suite of transcriptional changes that anEpichloëspecies needs to maintain symbiotic relationships with its grass host. Our results reveal a unique “patchwork” genome, in which repeat-rich blocks of DNA with discrete boundaries are interspersed by gene-rich sequences. In contrast to other species, the three-dimensional structure of the genome is anchored by these repeat blocks, which act to isolate transcription in neighbouring gene-rich regions. Genes that are differentially expressed in planta are enriched near the boundaries of these repeat-rich blocks, suggesting that their three-dimensional orientation partly encodes and regulates the symbiotic relationship formed by this organism.


2012 ◽  
Vol 40 (5) ◽  
pp. 955-962 ◽  
Author(s):  
Nathalie Sibille ◽  
Pau Bernadó

In recent years, IDPs (intrinsically disordered proteins) have emerged as pivotal actors in biology. Despite IDPs being present in all kingdoms of life, they are more abundant in eukaryotes where they are involved in the vast majority of regulation and signalling processes. The realization that, in some cases, functional states of proteins were partly or fully disordered was in contradiction to the traditional view where a well defined three-dimensional structure was required for activity. Several experimental evidences indicate, however, that structural features in IDPs such as transient secondary-structural elements and overall dimensions are crucial to their function. NMR has been the main tool to study IDP structure by probing conformational preferences at residue level. Additionally, SAXS (small-angle X-ray scattering) has the capacity to report on the three-dimensional space sampled by disordered states and therefore complements the local information provided by NMR. The present review describes how the synergy between NMR and SAXS can be exploited to obtain more detailed structural and dynamic models of IDPs in solution. These combined strategies, embedded into computational approaches, promise the elucidation of the structure–function properties of this important, but elusive, family of biomolecules.


Author(s):  
YU ZHANG ◽  
YU PING GUAN ◽  
RUI XIN HUANG

AbstractOcean striations are composed of alternating quasi-zonal band-like flows; this kind of organized structure of currents be found in all world’s oceans and seas. Previous studies have mainly been focused on the mechanisms of their generation and propagation. This study uses the spatial high-pass filtering to obtain the three-dimensional structure of ocean striations in the North Pacific in both the z-coordinate and σ-coordinate based on 10-yr averaged SODA3 data. First, we identify an ideal-fluid potential density domain where the striations are undisturbed by the surface forcing and boundary effects. Second, using the isopycnal layer analysis, we show that on isopycnal surfaces the orientations of striations nearly follow the potential vorticity (PV) contours, while in the meridional-vertical plane the central positions of striations are generally aligned with the latitude of zero gradient of the relative PV. Our analysis provides a simple dynamical interpretation and better understanding for the role of ocean striations.


1987 ◽  
Author(s):  
A Heckel ◽  
K M Hasselbach

Up to now the three-dimensional structure of t-PA or parts of this enzyme is unknown. Using computer graphical methods the spatial structure of the enzymatic part of t-PA is predicted on the hypothesis, the three-dimensional backbone structure of t-PA being similar to that of other serine proteases. The t-PA model was built up in three steps:1) Alignment of the t-PA sequence with other serine proteases. Comparison of enzyme structures available from Brookhaven Protein Data Bank proved elastase as a basis for modeling.2) Exchange of amino acids of elastase differing from the t-PA sequence. The replacement of amino acids was performed such that backbone atoms overlapp completely and side chains superpose as far as possible.3) Modeling of insertions and deletions. To determine the spatial arrangement of insertions and deletions parts of related enzymes such as chymotrypsin or trypsin were used whenever possible. Otherwise additional amino acid sequences were folded to a B-turn at the surface of the proteine, where all insertions or deletions are located. Finally the side chain torsion angles of amino acids were optimised to prevent close contacts of neigh bouring atoms and to improve hydrogen bonds and salt bridges.The resulting model was used to explain binding of arginine 560 of plasminogen to the active site of t-PA. Arginine 560 interacts with Asp 189, Gly 19 3, Ser 19 5 and Ser 214 of t-PA (chymotrypsin numbering). Furthermore interaction of chromo-genic substrate S 2288 with the active site of t-PA was studied. The need for D-configuration of the hydrophobic amino acid at the N-terminus of this tripeptide derivative could be easily explained.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mark Terasaki ◽  
Jason Cory Brunson ◽  
Justin Sardi

AbstractThe capillary network of the kidney glomerulus filters small molecules from the blood. The glomerular 3D structure should help to understand its function, but it is poorly characterized. We therefore devised a new approach in which an automated tape collecting microtome (ATUM) was used to collect 0.5 μm thick serial sections from fixed mouse kidneys. The sections were imaged by scanning electron microscopy at ~ 50 nm/pixel resolution. With this approach, 12 glomeruli were reconstructed at an x–y–z resolution ~ 10 × higher than that of paraffin sections. We found a previously undescribed no-cross zone between afferent and efferent branches on the vascular pole side; connections here would allow blood to exit without being adequately filtered. The capillary diameters throughout the glomerulus appeared to correspond with the amount of blood flow within them. The shortest path (minimum number of branches to travel from afferent to efferent arterioles) is relatively independent of glomerular size and is present primarily on the vascular pole size. This suggests that new branches and longer paths form on the urinary pole side. Network analysis indicates that the glomerular network does not form by repetitive longitudinal splitting of capillaries. Thus the 3D structure of the glomerular capillary network provides useful information with which to understand glomerular function. Other tissue structures in the body may benefit from this new three dimensional approach.


Sign in / Sign up

Export Citation Format

Share Document