scholarly journals Nutritional Value, Chemical Composition and Cytotoxic Properties of Common Purslane (Portulaca oleracea L.) in Relation to Harvesting Stage and Plant Part

Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 293 ◽  
Author(s):  
Spyridon A. Petropoulos ◽  
Ângela Fernandes ◽  
Maria Inês Dias ◽  
Ioannis B. Vasilakoglou ◽  
Konstantinos Petrotos ◽  
...  

Purslane (Portulaca oleraceae L.) is a widespread weed, which is highly appreciated for its high nutritional value with particular reference to the content in omega-3 fatty acids. In the present study, the nutritional value and chemical composition of purslane plants in relation to plant part and harvesting stage were evaluated. Plants were harvested at three growth stages (29, 43 and 52 days after sowing (DAS)), while the edible aerial parts were separated into stems and leaves. Leaves contained higher amounts of macronutrients than stems, especially at 52 DAS. α-tocopherol was the main isoform, which increased at 52 DAS, as well total tocopherols (values were in the ranges of 197–327 μg/100 g fresh weight (fw) and 302–481 μg/100 g fw, for α-tocopherol and total tocopherols, respectively). Glucose and fructose were the main free sugars in stems and leaves, respectively, whereas stems contained higher amounts of total sugars (values were ranged between 0.83 g and 1.28 g/100 g fw). Oxalic and total organic acid content was higher in leaves, especially at the last harvesting stage (52 DAS; 8.6 g and 30.3 g/100 g fw for oxalic acid and total organic acids, respectively). Regarding the fatty acid content, stems contained mainly palmitic (20.2–21.8%) and linoleic acid (23.02–27.11%), while leaves were abundant in α-linolenic acid (35.4–54.92%). Oleracein A and C were the major oleracein derivatives in leaves, regardless of the harvesting stage (values were in the ranges of 8.2–103.0 mg and 21.2–143 mg/100 g dried weight (dw) for oleraceins A and C, respectively). Cytotoxicity assays showed no hepatotoxicity, with GI50 values being higher than 400 μg/mL for all the harvesting stages and plant parts. In conclusion, early harvesting and the separation of plant parts could increase the nutritional value of the final product through increasing the content of valuable compounds, such as omega-3 fatty acids, phenolic compounds and oleracein derivatives, while at the same time, the contents of anti-nutritional compounds such as oxalic acid are reduced.

2015 ◽  
Vol 4 (6) ◽  
pp. 39 ◽  
Author(s):  
Rania Agil ◽  
Chloé Gilbert ◽  
Hamed Tavakoli ◽  
Farah Hosseinian

<p>With global consumer demand shifting towards the consumption of healthier foods, it is crucial to discover new sources of edible plants with high nutritional value and low cost. Unique weeds such as purslane have the potential to be used as an untapped source of unconventional food with diverse nutrients and beneficial bioactive properties. Inflammation can cause oxidative stress related diseases including cardiovascular disorders, aging and cancer. One key nutrient of purslane is omega-3 with potential of inhibitory properties against inflammatory and estrogenic mediators. Purslane is known to be a rich source of a-linolenic acid, 18:3 ω-3, an essential fatty acid, carotenes, antioxidants and minerals. However, the precise mechanism of action of its individual components in disease prevention is unknown. This review provides a summary on the role of purslane bioactives, particularly omega-3 fatty acids as one of purslane’s main constituents with potential of anti-inflammatory and anti-estrogenic properties. The discovery of new sources of plants rich in omega-3 fatty acids may be a useful strategy in utilizing natural alternative sources of foods that can enhance human health and wellbeing.</p>


Author(s):  
Maroua Cherif ◽  
Touria Bounnit ◽  
Hareb Al JAbri ◽  
Imen Saadaoui

Recently, algae have received considerable interest as one of the most promising feedstocks suitable for animal feed production due to their fast growth, less nutrient requirements and their ability to produce primary and secondary metabolites with high-added value. Different strategies were applied to improve both biomass and metabolites productivities aiming to produce highquality biomass with low cost and high nutritional value. Tetraselmis subcoliformis QUCCCM50, a local marine green alga presenting fast growth, high metabolites content and easy to harvest, was selected as a candidate for feed production. Three different stress conditions were applied to enhance its potential to produce high-value products such as Nitrogen or Phosphorus depletion and high salinity of 100ppt. An assessment of the growth properties and biomass productivity was performed during the growth. After 15 days of cultivation using tubular photobioreactors, the biomass was subjected to metabolites characterization and fatty acids methyl ester profiling. Results showed that the three stress conditions present different impacts on biomass productivity and, lipid quantity and quality. Cultivation under 100 ppt led to the highest increase in lipid content. This culture condition led to 25% increase of the omega-3 fatty acids with the appearance of the docosahexaenoic acid (DHA) and a remarkable increase of the alpha-linolenic acid, comparatively to the control. The enrichment of the Tetraselmis subcoliformis’ biomass in terms of omega-3 fatty acids enhance its nutritional value and make it very suitable for animal feed production. The optimized culture conditions obtained from the current study will be applied at large scale to enhance the quality of the biomass towards omega-3 enriched animal feed supplement production, and hence support achieving food security in the State of Qatar.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 232 ◽  
Author(s):  
Paulo E. S. Munekata ◽  
Mirian Pateiro ◽  
Rubén Domínguez ◽  
Jianjun Zhou ◽  
Francisco J. Barba ◽  
...  

The consumption of functional foods and nutraceuticals is gaining more importance in modern society. The exploration of alternative sources and the utilization of by-products coming from the food industry are gaining more importance. The present study aimed to characterize the nutritional value and potential use of sea bass by-products as a source of high-added-value compounds for the development of supplements. The chemical composition (moisture, protein, fat, and ash contents) and profiles of amino acids (high-performance liquid chromatography coupled to a scanning fluorescence detector), fatty acids (gas chromatography coupled to a flame ionization detector), and minerals (inductively coupled plasma optical emission spectroscopy) were determined for sea bass fillet and its by-products (skin, guts, gills, liver, head, and fish bones). The chemical composition assays revealed that by-products were rich sources of proteins (skin; 25.27 g/100 g), fat (guts and liver; 53.12 and 37.25 g/100 g, respectively), and minerals (gills, head, and fish bones; 5.81, 10.11, and 7.51 g/100 g, respectively). Regarding the amino-acid profile, the skin and liver were the main sources of essential amino acids with an essential amino-acid index of 208.22 and 208.07, respectively. In the case of the fatty-acid profile, all by-products displayed high amounts of unsaturated fatty acids, particularly monounsaturated (from 43.46 to 49.33 g/100 g fatty acids) and omega-3 fatty acids (in the range 10.85–14.10 g/100 g fatty acids). Finally, the evaluation of mineral profile indicated high contents of calcium and phosphorus in gills (1382.62 and 742.60 mg/100 g, respectively), head (2507.15 and 1277.01 mg/100 g, respectively), and fish bone (2093.26 and 1166.36 mg/100 g, respectively). Therefore, the main sources of monounsaturated, unsaturated, and long-chain omega-3 fatty acids were guts and liver. The most relevant source of minerals, particularly calcium, phosphorus, and manganese, were head, fish bones, and gills. The most promising source of proteins and amino acids was the skin of sea bass.


2015 ◽  
Vol 70 (4) ◽  
pp. 420-426 ◽  
Author(s):  
Spyridon Α. Petropoulos ◽  
Anestis Karkanis ◽  
Ângela Fernandes ◽  
Lillian Barros ◽  
Isabel C. F. R. Ferreira ◽  
...  

Author(s):  
Hadeer Zakaria ◽  
Tarek M. Mostafa ◽  
Gamal A. El-Azab ◽  
Nagy AH Sayed-Ahmed

Abstract. Background: Elevated homocysteine levels and malnutrition are frequently detected in hemodialysis patients and are believed to exacerbate cardiovascular comorbidities. Omega-3 fatty acids have been postulated to lower homocysteine levels by up-regulating metabolic enzymes and improving substrate availability for homocysteine degradation. Additionally, it has been suggested that prevention of folate depletion by vitamin E consumption decreases homocysteine levels. However, data on the effect of omega-3 fatty acids and/or vitamin E on homocysteine levels and nutritional status have been inconclusive. Therefore, this study was planned to examine the effect of combined supplementation of fish oil, as a source of omega-3 fatty acids, with wheat germ oil, as a source of vitamin E, on homocysteine and nutritional indices in hemodialysis patients. Methods: This study was a randomized, double-blind, placebo-controlled trial. Forty-six hemodialysis patients were randomly assigned to two equally-sized groups; a supplemented group who received 3000 mg/day of fish oil [1053 mg omega-3 fatty acids] plus 300 mg/day of wheat germ oil [0.765 mg vitamin E], and a matched placebo group who received placebo capsules for 4 months. Serum homocysteine and different nutritional indices were measured before and after the intervention. Results: Twenty patients in each group completed the study. At the end of the study, there were no significant changes in homocysteine levels and in the nutritional indices neither in the supplemented nor in the placebo-control groups (p > 0.05). Conclusions: Fish oil and wheat germ oil combination did not produce significant effects on serum homocysteine levels and nutritional indices of hemodialysis patients.


Sign in / Sign up

Export Citation Format

Share Document