scholarly journals Different Nitro-Oxidative Response of Odontarrhena lesbiaca Plants from Geographically Separated Habitats to Excess Nickel

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 837
Author(s):  
Gábor Feigl ◽  
Viktória Varga ◽  
Árpád Molnár ◽  
Panayiotis G. Dimitrakopoulos ◽  
Zsuzsanna Kolbert

Odontarrhena lesbiaca is an endemic species to the serpentine soils of Lesbos Island (Greece). As a nickel (Ni) hyperaccumulator, it possesses an exceptional Ni tolerance; and it can accumulate up to 0.2–2.4% Ni of its leaves’ dry weight. In our study, O. lesbiaca seeds from two geographically separated study sites (Ampeliko and Loutra) were germinated and grown on control and Ni-containing (3000 mg/kg) soil in a rhizotron system. Ni excess induced significant Ni uptake and translocation in both O. lesbiaca ecotypes and affected their root architecture differently: plants from the Ampeliko site proved to be more tolerant; since their root growth was less inhibited compared to plants originated from the Loutra site. In the roots of the Ampeliko ecotype nitric oxide (NO) was being accumulated, while the degree of protein tyrosine nitration decreased; suggesting that NO in this case acts as a signaling molecule. Moreover, the detected decrease in protein tyrosine nitration may serve as an indicator of this ecotype’s better relative tolerance compared to the more sensitive plants originated from Loutra. Results suggest that Ni hypertolerance and the ability of hyperaccumulation might be connected to the plants’ capability of maintaining their nitrosative balance; yet, relatively little is known about the relationship between excess Ni, tolerance mechanisms and the balance of reactive nitrogen species in plants so far.

2022 ◽  
Author(s):  
Supapid Eknikom ◽  
Ryo Nasuno ◽  
Hiroshi Takagi

Abstract Protein tyrosine nitration (PTN), in which tyrosine (Tyr) residues on proteins are converted into 3-nitrotyrosine (NT), is one of the post-translational modifications mediated by reactive nitrogen species (RNS). Many recent studies have reported that PTN contributed to signaling systems by altering the structures and/or functions of proteins. This study aimed to investigate connections between PTN and the inhibitory effect of nitrite-derived RNS on fermentation ability using the yeast Saccharomyces cerevisiae. The results indicated that RNS inhibited the ethanol production of yeast cells with increased intracellular pyruvate content. We also found that RNS decreased the activities of pyruvate decarboxylase (PDC) as a critical enzyme involved in ethanol production. Our proteomic analysis revealed that the main PDC isozyme Pdc1 underwent the PTN modification at Tyr38, Tyr157, and Tyr344. The biochemical analysis using the recombinant purified Pdc1 enzyme indicated that PTN at Tyr157 or Tyr344 significantly reduced the Pdc1 activity. Interestingly, the substitution of Tyr157 or Tyr344 to phenylalanine, which is no longer converted into NT, recovered the ethanol production under the RNS treatment conditions. These findings suggest that nitrite impairs the fermentation ability of yeast by inhibiting the Pdc1 activity via its PTN modification at Tyr157 and Tyr344 of Pdc1.


2001 ◽  
Vol 281 (6) ◽  
pp. H2289-H2294 ◽  
Author(s):  
Illarion V. Turko ◽  
Sisi Marcondes ◽  
Ferid Murad

High levels of reactive species of nitrogen and oxygen in diabetes may cause modifications of proteins. Recently, an increase in protein tyrosine nitration was found in several diabetic tissues. To understand whether protein tyrosine nitration is the cause or the result of the associated diabetic complications, it is essential to identify specific proteins vulnerable to nitration with in vivo models of diabetes. In the present study, we have demonstrated that succinyl-CoA:3-oxoacid CoA-transferase (SCOT; EC 2.8.3.5 ) is susceptible to tyrosine nitration in hearts from streptozotocin-treated rats. After 4 and 8 wk of streptozotocin administration and diabetes progression, SCOT from rat hearts had a 24% and 39% decrease in catalytic activity, respectively. The decrease in SCOT catalytic activity is accompanied by an accumulation of nitrotyrosine in SCOT protein. SCOT is a mitochondrial matrix protein responsible for ketone body utilization. Ketone bodies provide an alternative source of energy during periods of glucose deficiency. Because diabetes results in profound derangements in myocardial substrate utilization, we suggest that SCOT tyrosine nitration is a contributing factor to this impairment in the diabetic heart.


2018 ◽  
Vol 118 (3) ◽  
pp. 1338-1408 ◽  
Author(s):  
Gerardo Ferrer-Sueta ◽  
Nicolás Campolo ◽  
Madia Trujillo ◽  
Silvina Bartesaghi ◽  
Sebastián Carballal ◽  
...  

2002 ◽  
Vol 16 (9) ◽  
pp. 1144-1144 ◽  
Author(s):  
William M. Deen ◽  
Steven R. Tannenbaum ◽  
Joseph S. Beckman

Sign in / Sign up

Export Citation Format

Share Document