scholarly journals Mechanical and Durability Properties of Concrete with Coarse Recycled Aggregate Produced with Electric Arc Furnace Slag Concrete

2019 ◽  
Vol 10 (1) ◽  
pp. 216 ◽  
Author(s):  
Pablo Tamayo ◽  
Joao Pacheco ◽  
Carlos Thomas ◽  
Jorge de Brito ◽  
Jokin Rico

The search for more sustainable construction materials, capable of complying with quality standards and current innovation policies, aimed at saving natural resources and reducing global pollution, is one of the greatest present societal challenges. In this study, an innovative recycled aggregate concrete (RAC) is designed and produced based on the use of a coarse recycled aggregate (CRA) crushing concrete with electric arc furnace slags as aggregate. These slags are a by-product of the steelmaking industry and their use, which avoids the use of natural aggregates, is a new trend in concrete and pavement technology. This paper has investigated the effects of incorporating this type of CRA in concrete at several replacement levels (0%, 20%, 50% and 100% by volume), by means of the physical, mechanical and durability characterization of the mixes. The analysis of the results has allowed the benefits and disadvantages of these new CRAs to be established, by comparing them with those of a natural aggregate concrete (NAC) mix (with 0% CRA incorporation) and with the data available in the literature for concrete made with more common CRA based on construction and demolition waste (CDW). Compared to NAC, similar compressive strength and tensile strength values for all replacement ratios have been obtained. The modulus of elasticity, the resistance to chloride penetration and the resistance to carbonation are less affected by these CRA than when CRA from CDW waste is used. Slight increases in bulk density over 7% were observed for total replacement. Overall, functionally good mechanical and durability properties have been obtained.

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4620
Author(s):  
Fan You ◽  
Surong Luo ◽  
Jianlan Zheng ◽  
Kaibin Lin

Using recycled aggregate in concrete is effective in recycling construction and demolition waste. It is of critical significance to understand the fatigue properties of recycled aggregate concrete (RAC) to implement it safely in structures subjected to repeated or fatigue load. In this study, a series of fatigue tests was performed to investigate the compressive fatigue behavior of RAC. The performance of interfacial transition zones (ITZs) was analyzed by nanoindentation. Moreover, the influence of ITZs on the fatigue life of RAC was discussed. The results showed that the fatigue life of RAC obeyed the Weibull distribution, and the S-N-p equation could be obtained based on the fitting of Weibull parameters. In the high cycle fatigue zone (N≥104), the fatigue life of RAC was lower than that of natural aggregate concrete (NAC) under the same stress level. The fatigue deformation of RAC presented a three-stage deformation regularity, and the maximum deformation at the point of fatigue failure closely matched the monotonic stress-strain envelope. The multiple ITZs matched the weak areas of RAC, and the negative effect of ITZs on the fatigue life of RAC in the high cycle fatigue zone was found to be greater than that of NAC.


2018 ◽  
Vol 760 ◽  
pp. 193-198 ◽  
Author(s):  
Kristina Fořtová ◽  
Tereza Pavlů

This paper presents research results of recycled fine aggregate concrete testing. The main aim of this contribution is verification of properties of fine aggregate concrete with partial replacement of fine natural aggregate by recycled masonry aggregate originated from construction and demolition waste. The influence of partial replacement of natural sand to mechanical properties and freeze-thaw resistance is described. The compressive strength and flexural strength were tested at the age of 28 and 60 days and after 25, 50, 75 and 100 freeze-thaw cycles. Partial replacement of natural sand was 0, 25 and 50 % for all these tests. Prismatic specimens were examined.


2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Mirjana Malešev ◽  
Vlastimir Radonjanin ◽  
Gordana Broćeta

Following an example of the world's great powers that developed the recycling industry after natural disasters and wars, the paper points to the possibility of using large quantities of construction and demolition waste, generated as a result of the recent floods in the BiH and Serbia. Based on the years of extensive experimental research, and the research conducted by eminent experts, an overview is provided of the most basic properties and application of recycled aggregate concrete. It has been shown that the application of coarse recycled concrete aggregate, as the component materials in the concrete mixtures, it is possible to produce structural concrete that can be satisfactory and even with high quality, which primarily depends on the characteristics of crushed demolished concrete.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5675
Author(s):  
Caroline S. Rangel ◽  
Mayara Amario ◽  
Marco Pepe ◽  
Enzo Martinelli ◽  
Romildo D. Toledo Filho

Recently, concerns have been rising about the impact of increasing the depletion of natural resources and the relevant generation of construction and demolition waste, on the environment and economy. Therefore, several efforts have been made to promote sustainable efficiency in the construction industry and the use of recycled aggregates derived from concrete debris for new concrete mixtures (leading to so-called recycled aggregate concrete, RAC) is one of the most promising solutions. Unfortunately, there are still gaps in knowledge regarding the durability performances of RAC. In this study, we investigate durability of structural RAC subjected to wet-dry cycles. We analyze the results of an experimental campaign aimed at evaluating the degradation process induced by wetting and drying cycles on the key physical and mechanical properties of normal- and high-strength concrete, produced with coarse recycled concrete aggregates (RCAs) of different sizes and origins. On the basis of the results we propose a degradation law for wetting and drying cycles, which explicitly makes a possible correlation between the initial concrete porosity, directly related to the specific properties of the RCAs and the resulting level of damage obtained in RAC samples.


2019 ◽  
Vol 19 (4) ◽  
pp. 594-613 ◽  
Author(s):  
Emmanuel Ejiofor Anike ◽  
Messaoud Saidani ◽  
Eshmaiel Ganjian ◽  
Mark Tyrer ◽  
Adegoke Omotayo Olubanwo

Purpose This paper aims to review the effect of using recycled aggregates (RA) on the properties of recycled aggregate concrete (RAC) following the steady rise in global demand for concrete and the large generation of construction and demolition waste. Design/methodology/approach This study reviewed relevant literature of research work carried out by previous researchers, leading to a deeper understanding of the properties of both RA and RAC. The properties of RA and RAC reported in the various studies were then compared to their corresponding natural aggregate (NA) and natural aggregate concrete, as well as the specifications provided in different codes of practice. In addition, the mix design methods appropriate to RAC and the cost implication of using RA were reviewed. Findings Findings show that the contribution of RA to strength appears inferior in comparison to NA. The shortcoming is attributed to the mortar attached to the RA, which raises its water absorption capacity and lowers its density relative to those of NA. However, it has been reported that the use of regulated quantity of RA, new mixing and proportioning methods, the addition of admixtures and strengthening materials such as steel fibres, can improve both mechanical and durability properties of RAC. Cost evaluation also showed that some savings can be realized by using RA instead of NA. Originality/value This research serves as a guide for future works and suggests that the use of RA as aggregate in new concrete is technically possible, depending on the mix design method adopted.


2014 ◽  
Vol 1054 ◽  
pp. 221-226 ◽  
Author(s):  
Tereza Pavlů ◽  
Magdaléna Šefflová

The main aim of this contribution is description of the static and the dynamic modulus of elasticity of concrete containing recycled aggregate. Recycled construction and demolition waste, especially recycled concrete, is able to use as an aggregate for concrete, but using of recycled aggregate has a negative impact of concrete characteristic. This paper presents results of non-destructive measurement of recycled aggregate concrete properties. Series of concrete samples with 100% replacement ratios of coarse natural aggregate by coarse recycled aggregate from different sources were prepared for this study. The static and the dynamic modulus of elasticity were investigated on specimens 100 x 100 x 400 mm. All tested mixtures were also tested on compressive strength.


2020 ◽  
Vol 12 (16) ◽  
pp. 6475 ◽  
Author(s):  
Caroline Santana Rangel ◽  
Mayara Amario ◽  
Marco Pepe ◽  
Enzo Martinelli ◽  
Romildo Dias Toledo Filho

The increasing global demand for natural resources and the extensive production of construction and demolition waste (CDW) raise concerns for both the economic and environmental consequences that they can induce. Several efforts are being made with the aim to promote sustainable practices in the construction industry. In this context, one of the most relevant options refers to reusing CDW in new construction: specifically, the use of recycled concrete aggregate (RCA) is attracting a growing interest. Unfortunately, although the behavior of recycled aggregate concrete (RAC) has been widely investigated in the last few years, there are still knowledge gaps to fill on various aspects of the RAC performance, such as its durability in extreme conditions. The present study deals with the freeze-thaw performance of normal- (C35) and high-strength (C60) RAC produced with RCAs derived from different sources. Specifically, ten concrete mixtures were subjected to a different number of freeze-thaw cycles (namely, 0, 150 and 300), with the aim of analyzing the degradation of key physical and mechanical properties, such density, compressive strength, elastic modulus and tensile strength. Based on the obtained experimental results, a novel degradation law for freeze-thaw cycles is proposed: it unveils a relationship between open porosity of concrete, which is directly correlated to the peculiar properties of RCAs, and the corresponding damage level determined on RAC specimens.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Khaleel H. Younis ◽  
Abdulfattah A. Amin ◽  
Hemin G. Ahmed ◽  
Shelan M. Maruf

This experimental research investigates the effect of utilizing metakaolin (MK) on the behavior of recycled aggregate concrete (RAC). The RAC incorporates recycled coarse aggregate (RCA) originated from crushing construction and demolition waste. The investigated parameters were RCA and MK contents. Tests of workability and mechanical properties such as compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity were conducted to evaluate the influence of MK on workability and mechanical behavior of RAC. In total, 19 mixes were prepared. These mixes are divided into four groups. Group zero (G0) includes a reference mix containing normal coarse aggregate (NCA) and 3 mixes made with 35%, 70%, and 100% of RCA. Each one of the other three groups (G1, G2, and G3) was made with one content of the three contents of RCA, and each group includes five mixes made with the contents of 4%, 8%, 12%, 16%, and 20% of MK. Empirical models among the mechanical properties of the RAC mixes were developed and compared with models of standard codes of practice such as ACI 318, BS 8110, and Eurocode 2. It was found that MK reduces the workability of the RAC mixes. Nonetheless, the outcomes reveal that MK can improve the compressive, splitting tensile, and flexural strengths and the elastic modulus of RAC. This strength improvement enhances as the content of MK increases. The proposed models for the mechanical properties of RAC made with MK showed good correlations. The developed model for modulus of elasticity is quite close to the Eurocode 2 model, whereas the models of ACI 318 and BS 8110 underestimate the values of the modulus of elasticity.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Khaleel H. Younis ◽  
Shelan M. Mustafa

The aim of this paper was to examine the feasibility of using nanoparticles of SiO2 (nanosilica) to improve the performance of recycled aggregate concrete (RAC) containing recycled aggregate (RA) derived from processing construction and demolition waste of concrete buildings. The examined properties include compressive strength, splitting tensile strength, and water absorption. The study also includes examining the microstructure of RA and RAC with and without nanoparticles of SiO2. In total, nine mixes were investigated. Two mixes with RA contents of 50% and 100% were investigated and for each RA content; three mixes were prepared with three different nanoparticles dosages 0.4%, 0.8%, and 1.2% (by mass of cement). A control mix with natural aggregate (NA) was also prepared for comparison reasons. The results show that nanoparticles of silica can improve the compressive strength, tensile strength, reduce the water absorption, and modify the microstructure of RAC.


Sign in / Sign up

Export Citation Format

Share Document