scholarly journals Wire Electrochemical Machining with Pulsating Radial Electrolyte Supply and Preparation of Its Tube Electrode with Micro-Holes

2020 ◽  
Vol 10 (1) ◽  
pp. 331
Author(s):  
Chongchang Xu ◽  
Xiaolong Fang ◽  
Zhao Han ◽  
Di Zhu

Wire electrochemical machining (WECM) has great advantages and potential for fabricating parts with ruled surfaces made of difficult-to-machine materials. Characterized by a relatively short flow path, a pulsating radial electrolyte supply in WECM is proposed to improve the machining capability for thick workpieces. The tool is a tube electrode with a line of micro-holes on cylindrical surface. This paper introduces research into the processing of micro-holes in the tube electrode using a rotating helical electrode. The quantitative relationship among the feed rate, the applied voltage, and the diameter of the outlet holes was determined experimentally. A tube electrode with holes of varying diameters was fabricated by adjusting the applied voltage. Using it as a tool electrode, kerfs with a length of 10 mm and an averaged width of 0.903 mm were machined at a feed rate of 6 μm/s in a 30 mm-thick block, and there was no short circuit during processing. It was shown experimentally that using a tube electrode with holes of varying diameters as a tool electrode provides better process capacity for pulsating radial electrolyte supply in WECM.

2013 ◽  
Vol 584 ◽  
pp. 15-19
Author(s):  
Zhi Yong Li ◽  
Pei Yu Dong ◽  
Yi Gang Wang

In this study, we firstly developed a numerical electrochemical micro-machining (EMM) setup. Furthermore, the effects of five vital process parameters, applied voltage, electrolyte type, electrode shape and diameter, electrode feed rate on micro-seams machining accuracy and process stability were evaluated. The experimental results show that: Wire electrodes machining accuracy is higher than that of sheet electrode. With the wire electrodes diameter decreased from 0.2mm to 0.06mm, micro-seam width is reduced by 36.55%. With the wire electrode feed rate increased from 0.2mm/min to 0.6mmm/min, micro-seam width is reduced by 44.2%. Sheet electrodes machining stability is better than that of wire electrode. The number of machining stability of sheet electrode is 25% higher than that of wire electrode in the condition of 8V applied voltage.


2017 ◽  
Vol 872 ◽  
pp. 67-76
Author(s):  
Jun Yao ◽  
Yu Jun Nie ◽  
Zhi Tong Chen

The large complex structure integral components composed of difficult-to-machine material (such as titanium alloy, high temperature alloy) are more and more widely applied in aerospace, weapon equipment and other industries. The material utilization rate and the processing efficiency of the milling process are very low, the cost is high. Micro copper tubes (diameter 2mm, inner diameter 1.6mm) are arranged to electrode with shape to be processed, which could cut these components with a high efficiency and low cost. The fabrication of electrode is simple and convenient, so the cost of electrode could be reduced too. The flow field design is an important problem to be solved. The model of flow field is established, and flow field of different cathodes are simulated.The analysis results show that the rectifying ring is favorable for the electrochemical machining. Finally, the cathode with rectifying ring is used in processing experiment, the edge of cutting zone is orderly, no spark and short circuit occurs. Straight line and circular hole is successfully processed. The feasibility of the scheme is proved.


2018 ◽  
Vol 226 ◽  
pp. 03017
Author(s):  
Vladimir V. Glebov ◽  
Irina N. Danilenko ◽  
Ruslan I. Ratushinsky

In this research shaped tube electrolytic machining of drilling and milling of magnetic alloys parts and difficult-to-cut metals, steels and alloys is presented. New research made in the field of space, aviation, automobile, medical, computer and electronics, and others has created the need for small and fine holes with high aspect ratio in these materials. The primary investigations of ECM with the tubular tool electrode are presented. Compared with mechanical machining, shaped tube electrolytic machining (STEM) exhibits an advantage in producing micro-holes with a high aspect ratio and in producing the curved holes. In order to realize the process of electrochemical machining, experimental assembly with the shaped tube tool electrode has been designed and manufactured. Completed researches indicate that this tool electrode has a high potential to machine difficult-to-cut and brittle metals economically and efficiently.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110099
Author(s):  
Chin-Wei Liu ◽  
Chian-Huei Chen ◽  
Shyong Lee

At present, the development of through-mask micro-electrochemical machining is only limited to static machining, where the size of the tool is usually the same as that of the workpiece. However, in the electrochemical processing, metal with good electrical conductivity is chosen as the tool electrode, and it is usually very expensive. Based on the cost consideration, a moving tool with small size may be preferred. Finite element method is used in this paper to create the electric field model of through-mask micro-electrochemical machining with moving tool. The effects of the parameters, such as applied voltage, mask thickness, on the machining shape are investigated. The results show that the higher the applied voltage, the larger the machining depth and width, and also the better the aspect ratio. When the thickness of the mask is thin, the electric field is unevenly distributed and the lateral corrosion is more serious. There is an island-like phenomenon, which is related to the masking of the mask. When the moving speed is relatively slow, the relative processing time is longer. The current density accumulated on the surface of the workpiece is thus higher and the material removal rate is higher. As the processing time increases, the machining depth becomes deeper, and the forward corrosion rate is slow down.


2021 ◽  
Author(s):  
Lei Ji ◽  
Yan Zhang ◽  
Guoqian Wang ◽  
Jie Zhang ◽  
Wentao Yang

Abstract Micro-hole fabrication at a high speed and accuracy of machining while maintaining high surface quality is challenging. A core difficulty is the removal of the products of machining from extremely narrow gaps. To solve this problem, this study proposes an approach that combines high-speed electrical discharge machining (EDM) with electrochemical machining (ECM) by using a helical tube electrode with matched internal and external flushing. During high-speed electrical discharge drilling, matching the internal flushing with the clockwise rotation of the helical electrode can help remove debris from the bottom of the blind hole. During ECM, matching the external flushing with the anticlockwise rotation of the helical electrode can improve the flow of electrolyte in the gap. First, the flow field was simulated to show that matching the internal and external flushing of the helical electrode can enhance the flow of the medium and reduce particle concentration in extremely narrow gaps. Second, a series of experiments were conducted to verify that the taper of the hole and the surface quality of its wall can be improved by using the helical tube electrode. Finally, an experiment was carried out to optimize the machining parameters, and yielded a minimum taper of 0.008 at a speed of rotation of 460 rpm, and pressures of internal and external flushing of 9 MPa and 4 MPa, respectively.


2010 ◽  
Vol 126-128 ◽  
pp. 885-890
Author(s):  
K.P. Somashekhar ◽  
N. Ramachandran ◽  
Jose Mathew

This work is on the preparation of microelectrodes for μ-EDM operation using μ-WEDG process. Electrodes of Ø500 μm are fabricated with various discharge energy machining conditions. Effects of gap voltage, capacitance & feed rate on the surface finish of the electrodes and overcut of the thus produced micro holes are investigated. The profile of microelectrodes is measured using surface roughness tester with 2μm stylus interfaced with SURFPAK software. The study demonstrated that for brass electrodes an arithmetic average roughness value as low as 1.7μm and an overcut of 3 µm could be achieved. The significant machining parameters are found using ANOVA. Surface of the produced microelectrodes are examined using Scanning Electron Microscope. μ-WEDG process parameters could be adjusted to achieve good surface integrity on microelectrodes. Experimental results showed that the surface roughness of microelectrodes depended primarily on feed rate of the electrode. The observations showed the clear and quantitative correlation existing between the micrometer level surface quality and process parameters. The resulting microelectrodes are found to be of exceptionally high quality and could be used for μ- EDM operation on different types of work materials.


2018 ◽  
Vol 8 (8) ◽  
pp. 1296 ◽  
Author(s):  
Xiaochen Jiang ◽  
Jia Liu ◽  
Di Zhu ◽  
Mingming Wang ◽  
Ningsong Qu

Tuning the coupling of pulse duration and tool vibration in electrochemical machining (PVECM) is an effective method to improve machining accuracy and surface quality. In general, the pulse is set at the same frequency as the tool vibration, and a symmetrical distribution is attained at the minimum inter-electrode gap. To analyse the characteristics of the electrolyte fluid flow and of the electrolysis products in the oscillating inter-electrode gap, a dynamic simulation of the PVECM process was carried out. The simulation results indicated that the electrolyte pressure and gas void fraction when the pulse arrived as the inter-electrode gap was narrowing clearly differed from those when the inter-electrode gap was expanding. Therefore, in addition to the traditional symmetry coupling mode, two other coupling modes called the pre-position and the post-position coupling modes are proposed which use a pulse either just before or just after the minimum inter-electrode gap. Comparative experiments involving the feed rate and machining localization were carried out to evaluate the influence of the three coupling modes. In addition, current waveforms were recorded to analyse the differences between the three coupling modes. The results revealed that the highest feed rate and the best machining localization were achieved by using the pre-position coupling mode.


Sign in / Sign up

Export Citation Format

Share Document