scholarly journals An Advanced Reversible Data Hiding Algorithm Using Local Similarity, Curved Surface Characteristics, and Edge Characteristics in Images

2020 ◽  
Vol 10 (3) ◽  
pp. 836 ◽  
Author(s):  
Soo-Mok Jung ◽  
Byung-Won On

In this paper, we proposed methods to accurately predict pixel values by effectively using local similarity, curved surface characteristics, and edge characteristics present in an image. Furthermore, to hide more confidential data in a cover image using the prediction image composed of precisely predicted pixel values, we proposed an effective data hiding technique that applied the prediction image to the conventional reversible data hiding technique. Precise prediction of pixel values greatly increases the frequency at the peak point in the histogram of the difference sequence generated using the cover and prediction images. This considerably increases the amount of confidential data that can be hidden in the cover image. The proposed reversible data hiding algorithm (ARDHA) can hide up to 24.5% more confidential data than the existing algorithm. Moreover, it is not possible to determine the presence of hidden confidential data in stego-images, as they possess excellent visual quality. The confidential data can be extracted from the stego-image without loss, and the original cover image can be restored from the stego-image without distortion. Therefore, the proposed algorithm can be effectively used in digital image watermarking, military, and medical applications.

2021 ◽  
pp. 1-12
Author(s):  
R. Anushiadevi ◽  
Rengarajan Amirtharajan

Reversible Data Hiding (RDH) schemes have recently gained much interest in protecting the secret information and sensitive cover images. For cloud security applications, the third party’s data embedding can be done (e.g., cloud service). In such a scenario, to protect the cover image from unauthorized access, it is essential to encrypt before embedding it. It can be overcome by combining the RDH scheme with encryption. However, the key challenge in integrating RDH with encryption is that the correlation between adjacent pixels begins to disappear after encryption, so reversibility cannot be accomplished. RDH with elliptic curve cryptography is proposed to overcome this challenge. In this paper (ECC-RDH) by adopting additive homomorphism property; the proposed method, the stego image decryption gives the sum of the original image and confidential data. The significant advantages of this method are, the cover image is transferred with high security, the embedding capacity is 0.5 bpp with a smaller location map size of 0.05 bpp. The recovered image and secrets are the same as in the original, and thus 100% reversibility is proved.


2020 ◽  
Vol 16 (7) ◽  
pp. 155014772091100
Author(s):  
Pyung-Han Kim ◽  
Kwan-Woo Ryu ◽  
Ki-Hyun Jung

In this article, a new reversible data hiding scheme using pixel-value differencing in dual images is proposed. The proposed pixel-value differencing method can embed more secret data as the difference value of adjacent pixels is increased. In the proposed scheme, the cover image is divided into non-overlapping blocks and the maximum difference value is calculated to hide secret bits. On the sender side, the length of embeddable secret data is calculated by using the maximum difference value and the log function, and the decimal secret data are embedded into the two stego-images after applying the ceil function and floor function. On the receiver side, the secret data extraction and the cover image restoration can be performed by using the correlation between two stego-images. After recovering the cover image from two stego-images, the secret data can be extracted using the maximum difference value and the log function. The experimental results show that the proposed scheme has a higher embedding capacity and the proposed scheme differs in embedding the secret data depending on the characteristics of the cover image with less distortion. Also, the proposed scheme maintains the degree of image distortion that cannot be perceived by the human visual system.


Author(s):  
Sabyasachi Pramanik ◽  
R P Singh ◽  
Ramkrishna Ghosh

<p>Steganography is data hiding technique in internet. Here we send CAPTCHA codes within a cover image using Image steganography. CAPTCHA are the crazy codes. They are used in human response test. The word is actually an acronym for: "<strong>C</strong>ompletely <strong>A</strong>utomated <strong>P</strong>ublic <strong>T</strong>uring test to tell <strong>C</strong>omputers and <strong>H</strong>umans <strong>A</strong>part". It is a type of challenge–response test used in computing to determine whether or not the user is a human. Websites implement CAPTCHA codes into their registration processes due to spam. This is the utility of CAPTCHA codes. Here we generate CAPTCHA codes and later send them in an encrypted version. So, actually CAPTCHA codes are embedded into cover image with an encrypted form resulting stego image and thus attackers cannot fetch the actual CAPTCHA resulting in a secured transmission of confidential data using image steganography.</p>


Author(s):  
B. Bazeer Ahamed

Data hiding has emerged as a major research area due to the phenomenal growth in internet and multimedia technologies. Securing data transmitted over the internet becomes a challenging issue caused in digitization and networking over the past decade. Data hiding schemes have been adopted to protect digital media content which involves confidential data such as text, video, audio, images, and compression coding. A good reversible data hiding scheme is characterized by the possession of attributes like reversible, imperceptible, high payload capacity, and robustness. By reversible, it's meant that the extraction of the payload as well as the restoration of the host image perfectly from the stego image. Secondly, the imperceptible stego image resemblance against the cover/host image. Finally, robustness counts for the ability to sustain the secret payload against both intentional and unintentional attacks; it has been observed that all the proposed algorithms are more robust and reversible against various attacks in lower bit error rate and higher normalization coefficient.


Author(s):  
Jaime Sarabia-Lopez ◽  
Diana Nunez-Ramirez ◽  
David Mata-Mendoza ◽  
Eduardo Fragoso-Navarro ◽  
Manuel Cedillo-Hernandez ◽  
...  

2012 ◽  
Vol 6-7 ◽  
pp. 428-433
Author(s):  
Yan Wei Li ◽  
Mei Chen Wu ◽  
Tung Shou Chen ◽  
Wien Hong

We propose a reversible data hiding technique to improve Hong and Chen’s (2010) method. Hong and Chen divide the cover image into pixel group, and use reference pixels to predict other pixel values. Data are then embedded by modifying the prediction errors. However, when solving the overflow and underflow problems, they employ a location map to record the position of saturated pixels, and these pixels will not be used to carry data. In their method, if the image has a plenty of saturated pixels, the payload is decreased significantly because a lot of saturated pixels will not joint the embedment. We improve Hong and Chen’s method such that the saturated pixels can be used to carry data. The positions of these saturated pixels are then recorded in a location map, and the location map is embedded together with the secret data. The experimental results illustrate that the proposed method has better payload, will providing a comparable image quality.


2020 ◽  
Author(s):  
Xinyang Ying ◽  
Guobing Zhou

Abstract The reversible data hiding allows original image to be completely recovered from the stego image when the secret data has been extracted, it is has drawn a lot of attentions from researchers. In this paper, a novel Taylor Expansion (TE) based stereo image reversible data hiding method is presented. Since the prediction accuracy is essential to the data hiding performance, a novel TE based predictor using correlations of two views of the stereo image is proposed. TE can fully exploit strong relationships between matched pixels in the stereo image so that the accuracy of the prediction can be improved. Then, histogram shifting is utilized to embed data to decrease distortion of stereo images, and multi-level hiding can increase embedding capacity. Experimental results show that the proposed method is superior to some existing data hiding methods considering embedding capacity and the quality of the stego stereo images.


Author(s):  
Mehul S. Raval

The chapter presents an application of reversible data hiding for the authentication of image travelling over a hostile and insecure communication channel. The reversible data resides in the image and tracks any changes done to it on a communication channel. The extraction of data and any modification to its structure reveals changes in the image. This allows the use of data hiding for forensic purpose. The reversible data hiding provides an additional advantage along with active forensics. The image regains original form after removal of the embedded data. However, reversible data hiding is an interplay between the image quality and watermarking capacity. The chapter presents the generic framework for data hiding and discusses its special case reversible data hiding. It presents capacity-behavior analysis of the difference expansion scheme. It performs in-depth analysis on the type of predictor and its impact on the capacity of the reversible data hiding scheme. Finally, the chapter presents a case study to showcase the use of reversible data hiding for image authentication.


Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Haidong Zhong ◽  
Xianyi Chen ◽  
Qinglong Tian

Recently, reversible image transformation (RIT) technology has attracted considerable attention because it is able not only to generate stego-images that look similar to target images of the same size, but also to recover the secret image losslessly. Therefore, it is very useful in image privacy protection and reversible data hiding in encrypted images. However, the amount of accessorial information, for recording the transformation parameters, is very large in the traditional RIT method, which results in an abrupt degradation of the stego-image quality. In this paper, an improved RIT method for reducing the auxiliary information is proposed. Firstly, we divide secret and target images into non-overlapping blocks, and classify these blocks into K classes by using the K-means clustering method. Secondly, we match blocks in the last (K-T)-classes using the traditional RIT method for a threshold T, in which the secret and target blocks are paired with the same compound index. Thirdly, the accessorial information (AI) produced by the matching can be represented as a secret segment, and the secret segment can be hided by patching blocks in the first T-classes. Experimental results show that the proposed strategy can reduce the AI and improve the stego-image quality effectively.


2015 ◽  
Vol 8 (4) ◽  
pp. 32
Author(s):  
Sabarish Sridhar

Steganography, water marking and encryption are widely used in image processing and communication. A general practice is to use them independently or in combination of two - for e.g. data hiding with encryption or steganography alone. This paper aims to combine the features of watermarking, image encryption as well as image steganography to provide reliable and secure data transmission .The basics of data hiding and encryption are explained. The first step involves inserting the required watermark on the image at the optimum bit plane. The second step is to use an RSA hash to actually encrypt the image. The final step involves obtaining a cover image and hiding the encrypted image within this cover image. A set of metrics will be used for evaluation of the effectiveness of the digital water marking. The list includes Mean Squared Error, Peak Signal to Noise Ratio and Feature Similarity.


Sign in / Sign up

Export Citation Format

Share Document