scholarly journals A Coordination Space Model for Assemblability Analysis and Optimization during Measurement-Assisted Large-Scale Assembly

2020 ◽  
Vol 10 (9) ◽  
pp. 3331 ◽  
Author(s):  
Zhizhuo Cui ◽  
Fuzhou Du

The assembly process is sometimes blocked due to excessive dimension deviations during large-scale assembly. It is inefficient to improve the assembly quality by trial assembly, inspection, and accuracy compensation in the case of excessive deviations. Therefore, assemblability prediction by analyzing the measurement data, assembly accuracy requirements, and the pose of parts is an effective way to discover the assembly deviations in advance for measurement-assisted assembly. In this paper, a coordination space model is constructed based on a small displacement torsor and assembly accuracy requirements. An assemblability analysis method is proposed to check whether the assembly can be executed directly. Aiming at the incoordination problem, an assemblability optimization method based on the union coordination space is proposed. Finally, taking the space manipulator assembly as an example, the result shows that the proposed method can improve assemblability with a better assembly quality and less workload compared to the least-squares method.

2021 ◽  
Author(s):  
Minghua Li ◽  
Yunlong Wang ◽  
Qingchao Sun ◽  
Xiaokai Mu

Abstract The measurement and assembly of aeroengine rotor are separated from each other, the uncertainty of the test position leads to the test data cannot reflect the geometric characteristics of the rotor itself, which makes it difficult to accurately measure and predict the assembly accuracy. Combined with the fact that the geometric characteristics of parts / components are not related to the measurement datum, an assembly accuracy test and prediction method is proposed to reduce the datum deviation and ensure the consistency of test data. Firstly, the small displacement torsor is used to describe the datum deviation, the inverse matrix transformation is applied to reduce the datum deviation, and the datum independent matrix is utilized to express the pose characteristics of the parts / components, which provides the data basis for the accurate prediction of assembly accuracy. Then, the pose transfer model based on the datum independent matrix is established, which is more comprehensive and clearer than the traditional accuracy prediction model. Furthermore, a direct optimization method is also established, which is more efficient than the traditional genetic algorithm. The assembly experiment of aeroengine rotor shows that the model and method proposed in this paper are beneficial to reduce the coaxiality of the front and rear fulcrum and they can better reflect the geometric characteristics of the rotor itself. The related research also has reference significance for other large-scale and high-precision mechanical product assembly.


Author(s):  
Sun Jin ◽  
Hua Chen ◽  
Zhimin Li ◽  
Xinmin Lai

The small displacement torsor model is a classic three-dimensional tolerance analysis method. It uses three translational vectors and three rotational vectors to represent tolerance information in three-dimensional Euclidean space. However, the target features of this model mainly focused on planes and cylinders in previous studies. Little attention is invested to conical features and their joints which are used widely and more complex than the planar and cylindrical features. The objective of this article is to present a three-dimensional mathematical method of tolerance representation about conical surfaces and their joints based on the small displacement torsor model, and propose a mathematical model of variations and constraint relations of components of the small displacement torsor for conical surfaces caused by geometric tolerances limited by its tolerance zone. In addition, a simple example involving conical structures is used to demonstrate three-dimensional conical tolerance propagation. Both deterministic and statistical results are obtained by this model.


Author(s):  
Xiaokai Mu ◽  
Bo Yuan ◽  
Yunlong Wang ◽  
Wei Sun ◽  
Chong Liu ◽  
...  

The manufacturing/assembly error of machine parts is a key factor that influences the performance and economy of mechanical systems. To achieve high assembly precision and performance on the basis of low manufacturing accuracy and cost, this study primarily optimizes the assembly error of machine parts. First, the small displacement torsor is used to characterize the small deformation between the mating surfaces of parts. Subsequently, to realize the combination of small displacement torsor and tolerance, the small displacement torsor with manufacturing error and assembly deformation is mapped to the tolerance domain. Second, based on the relationship between small displacement torsor and tolerance, an assembly error optimization model is established on the basis of the conventional tolerance-cost model, considering the emergence of manufacturing error and assembly deformation. Third, aiming at the high-pressure rotor for aeroengines, the error optimization design of assembly is carried out developed with the assembly accuracy requirement as the constraint condition, and the total costs of the manufacturing and assembly processes as the objective. The optimization results indicate that the manufacturing error range of each mating surface after optimization changes, from small to large, under the premise of ensuring the product’s performance, which verifies that the difficulty in processing parts is reduced, and that the efficiency of parts processing is also improved. Meanwhile, the relative manufacturing cost after optimization is reduced by 6.79%, which reflects the economic requirements to a certain extent. The content of this article provides the necessary design basis and reference for the realization of high assembly accuracy of mechanical systems, under low cost requirements from the design perspective.


2005 ◽  
Vol 33 (1) ◽  
pp. 38-62 ◽  
Author(s):  
S. Oida ◽  
E. Seta ◽  
H. Heguri ◽  
K. Kato

Abstract Vehicles, such as an agricultural tractor, construction vehicle, mobile machinery, and 4-wheel drive vehicle, are often operated on unpaved ground. In many cases, the ground is deformable; therefore, the deformation should be taken into consideration in order to assess the off-the-road performance of a tire. Recent progress in computational mechanics enabled us to simulate the large scale coupling problem, in which the deformation of tire structure and of surrounding medium can be interactively considered. Using this technology, hydroplaning phenomena and tire traction on snow have been predicted. In this paper, the simulation methodology of tire/soil coupling problems is developed for pneumatic tires of arbitrary tread patterns. The Finite Element Method (FEM) and the Finite Volume Method (FVM) are used for structural and for soil-flow analysis, respectively. The soil is modeled as an elastoplastic material with a specified yield criterion and a nonlinear elasticity. The material constants are referred to measurement data, so that the cone penetration resistance and the shear resistance are represented. Finally, the traction force of the tire in a cultivated field is predicted, and a good correlation with experiments is obtained.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 41
Author(s):  
Tim Jurisch ◽  
Stefan Cantré ◽  
Fokke Saathoff

A variety of studies recently proved the applicability of different dried, fine-grained dredged materials as replacement material for erosion-resistant sea dike covers. In Rostock, Germany, a large-scale field experiment was conducted, in which different dredged materials were tested with regard to installation technology, stability, turf development, infiltration, and erosion resistance. The infiltration experiments to study the development of a seepage line in the dike body showed unexpected measurement results. Due to the high complexity of the problem, standard geo-hydraulic models proved to be unable to analyze these results. Therefore, different methods of inverse infiltration modeling were applied, such as the parameter estimation tool (PEST) and the AMALGAM algorithm. In the paper, the two approaches are compared and discussed. A sensitivity analysis proved the presumption of a non-linear model behavior for the infiltration problem and the Eigenvalue ratio indicates that the dike infiltration is an ill-posed problem. Although this complicates the inverse modeling (e.g., termination in local minima), parameter sets close to an optimum were found with both the PEST and the AMALGAM algorithms. Together with the field measurement data, this information supports the rating of the effective material properties of the applied dredged materials used as dike cover material.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 381
Author(s):  
Mi Lin ◽  
Lixin Fu ◽  
Shakeel Ahmed ◽  
Qiong Wang ◽  
Yaoxian Zheng ◽  
...  

We propose a type of polarization-independent circulator based on a composite rod of ferrite and plasma materials in a two-dimensional photonic crystal (PhC) slab. Only one composite rod was set at the center of the structure to provide circulation for both TE- and TM-polarized waves. Additionally, to improve the performance of the circulator, three additional rods were inserted to improve the coupling condition between the center magneto-optical microcavity and the corresponding waveguides. Finite element method was used to calculate the characteristics of the structure and the Nelder–Mead optimization method was employed to obtain the optimum parameters. The results show that a low insertion loss (~0.22 dB) and high isolation (~14 dB) can be achieved in our structure for waves of both TE and TM polarizations. The idea presented here may be useful for designing compact polarization devices in large-scale integrated photonic circuits.


Sign in / Sign up

Export Citation Format

Share Document