scholarly journals First Experiments in Structural Biology at the European X-ray Free-Electron Laser

2020 ◽  
Vol 10 (10) ◽  
pp. 3642 ◽  
Author(s):  
Grant Mills ◽  
Richard Bean ◽  
Adrian P. Mancuso

Ultrabright pulses produced in X-ray free-electron lasers (XFELs) offer new possibilities for industry and research, particularly for biochemistry and pharmaceuticals. The unprecedented brilliance of these next-generation sources enables structure determination from sub-micron crystals as well as radiation-sensitive proteins. The European X-Ray Free-Electron Laser (EuXFEL), with its first light in 2017, ushered in a new era for ultrabright X-ray sources by providing an unparalleled megahertz-pulse repetition rate, with orders of magnitude more pulses per second than previous XFEL sources. This rapid pulse frequency has significant implications for structure determination; not only will data collection be faster (resulting in more structures per unit time), but experiments requiring large quantities of data, such as time-resolved structures, become feasible in a reasonable amount of experimental time. Early experiments at the SPB/SFX instrument of the EuXFEL demonstrate how such closely-spaced pulses can be successfully implemented in otherwise challenging experiments, such as time-resolved studies.

2019 ◽  
Vol 20 (6) ◽  
pp. 1401 ◽  
Author(s):  
Marius Schmidt

The focus of structural biology is shifting from the determination of static structures to the investigation of dynamical aspects of macromolecular function. With time-resolved macromolecular crystallography (TRX), intermediates that form and decay during the macromolecular reaction can be investigated, as well as their reaction dynamics. Time-resolved crystallographic methods were initially developed at synchrotrons. However, about a decade ago, extremely brilliant, femtosecond-pulsed X-ray sources, the free electron lasers for hard X-rays, became available to a wider community. TRX is now possible with femtosecond temporal resolution. This review provides an overview of methodological aspects of TRX, and at the same time, aims to outline the frontiers of this method at modern pulsed X-ray sources.


2018 ◽  
Vol 25 (5) ◽  
pp. 1317-1322 ◽  
Author(s):  
Norihiro Sei ◽  
Hiroshi Ogawa ◽  
QiKa Jia

It was demonstrated that harmonic order in free-electron laser (FEL) oscillations could be switched by adjusting the dispersive gap of the optical klystron ETLOK-III in the storage ring NIJI-IV. The effective gains for the fundamental and third-harmonic FEL oscillations were evaluated and it was confirmed that the FEL oscillated at the order of the harmonic with the higher effective gain. The ratio between the effective gain for the fundamental and that for the third harmonic was controlled by the dispersive gap. It was also demonstrated that a spectral measurement of the FEL-based Compton scattering X-ray beam was effective for directly observing the switching of the harmonic order. These results contribute to the development of higher-harmonic FEL oscillations suppressing the fundamental FEL oscillation in the extreme ultraviolet and X-ray regions.


Author(s):  
Marius Schmidt ◽  
Suraj Pandey ◽  
Adrian Mancuso ◽  
Richard Bean

Abstract This protocol introduces step by step into the collection of time resolved crystallographic data and their analysis at the European Free Electron Laser.


2015 ◽  
Vol 33 ◽  
pp. 115-125 ◽  
Author(s):  
Richard Neutze ◽  
Gisela Brändén ◽  
Gebhard FX Schertler

1995 ◽  
Vol 02 (04) ◽  
pp. 501-512 ◽  
Author(s):  
N.H. TOLK ◽  
J.T. MCKINLEY ◽  
G. MARGARITONDO

Synchrotron-radiation sources have become, since the late 1960’s, one of the fundamental experimental tools for surface and interface research. Only recently, however, a related type of photon sources - the free-electron lasers (FELs) — has begun to make important contributions to this field. For example, FELs have been used to reach unprecedented levels of accuracy and reliability in measuring semiconductor interface energy barriers. We review some of the present and proposed experiments that are made possible by the unmatched brightness and broad tunability of infrared FELs. Practical examples discussed in the review are supplied by our own programs at the Vanderbilt Free-Electron Laser. We also briefly analyze the possible future development of FELs and of their applications to surface and interface research, in particular, the possibility of x-ray FELs.


2014 ◽  
Vol 369 (1647) ◽  
pp. 20130337 ◽  
Author(s):  
Uwe Weierstall

X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques.


2016 ◽  
Vol 72 (2) ◽  
pp. 177-178
Author(s):  
Huaidong Jiang

Recent developments in the imaging of biological samples using the X-ray free-electron laser at the SACLA facility are highlighted.


Sign in / Sign up

Export Citation Format

Share Document