scholarly journals Hydrodynamic Forces of a Semi-Submerged Cylinder in an Oscillatory Flow

2020 ◽  
Vol 10 (18) ◽  
pp. 6404
Author(s):  
Haojie Ren ◽  
Shixiao Fu ◽  
Chang Liu ◽  
Mengmeng Zhang ◽  
Yuwang Xu ◽  
...  

This work experimentally investigated the performance of hydrodynamic forces on a semi-submerged cylinder under an oscillatory flow. To generate the equivalent oscillatory flow, the semi-submerged cylinder is forced to oscillate in several combinations of different periods and amplitudes. The mean downward lift force was observed to be significant and the fluctuating lift forces show dominant frequency is twice that of oscillatory flow and amplitude that is the same as the mean lift force. Based on this main hydrodynamic feature, a novel empirical prediction formula for the lift forces on semi-submerged cylinder under oscillatory flow is proposed where the lift forces expression is proportional to the square of oscillatory flow velocity. This novel empirical formula directly assigns the fluctuating lift force with frequency twice of oscillatory flow and the amplitude that is the same as the mean lift force. This assignment of empirical lift force formula reduces parameters required to determine a dynamic lift force but is demonstrated to well predict the fluctuating lift force. The lift coefficient can reach 1.5, which is larger than the typical value 1.2 of the drag coefficient for a fully submerged cylinder with infinite depth. Moreover, relationships among hydrodynamic coefficients, Keulegan-Carpenter (KC) number, Stokes number and Froude number are studied. With the increase of KC number, the Froude number has a more significant influence on the distribution of hydrodynamic coefficients. As Froude number is increasing, the drag coefficient shows a nonlinear decay (KC < 20) but a linear increase (KC > 20), while the added mass coefficients show a nonlinear (KC < 20) and a linear (KC > 20) increase trend. The present work can provide useful references for design of the relevant marine structures and serve as the useful guideline for future research.

2014 ◽  
Vol 756 ◽  
pp. 716-727 ◽  
Author(s):  
Z. X. Qi ◽  
I. Eames ◽  
E. R. Johnson

AbstractWe describe an experimental study of the forces acting on a square cylinder (of width $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}b$) which occupies 10–40 % of a channel (of width $w$), fixed in a free-surface channel flow. The force experienced by the obstacle depends critically on the Froude number upstream of the obstacle, ${\mathit{Fr}}_1$ (depth $h_1$), which sets the downstream Froude number, ${\mathit{Fr}}_2$ (depth $h_2$). When ${\mathit{Fr}}_1<{\mathit{Fr}}_{1c}$, where ${\mathit{Fr}}_{1c}$ is a critical Froude number, the flow is subcritical upstream and downstream of the obstacle. The drag effect tends to decrease or increase the water depth downstream or upstream of the obstacle, respectively. The force is form drag caused by an attached wake and scales as $\overline{F_{D}}\simeq C_D \rho b u_1^2 h_1/2$, where $C_D$ is a drag coefficient and $u_1$ is the upstream flow speed. The empirically determined drag coefficient is strongly influenced by blocking, and its variation follows the trend $C_D=C_{D0}(1+C_{D0}b/2w)^2$, where $C_{D0}=1.9$ corresponds to the drag coefficient of a square cylinder in an unblocked turbulent flow. The r.m.s. lift force is approximately 10–40 % of the mean drag force and is generated by vortex shedding from the obstacle. When ${\mathit{Fr}}_1={\mathit{Fr}}_{1c}\, (<1)$, the flow is choked and adjusts by generating a hydraulic jump downstream of the obstacle. The drag force scales as $\overline{F}_D\simeq C_K \rho b g (h_1^2-h_2^2)/2$, where experimentally we find $C_K\simeq 1$. The r.m.s. lift force is significantly smaller than the mean drag force. A consistent model is developed to explain the transitional behaviour by using a semi-empirical form of the drag force that combines form and hydrostatic components. The mean drag force scales as $\overline{F_{D}}\simeq \lambda \rho b g^{1/3} u_1^{4/3} h_1^{4/3}$, where $\lambda $ is a function of $b/w$ and ${\mathit{Fr}}_1$. For a choked flow, $\lambda =\lambda _c$ is a function of blocking ($b/w$). For small blocking fractions, $\lambda _c= C_{D0}/2$. In the choked flow regime, the largest contribution to the total drag force comes from the form-drag component.


Author(s):  
Carolyn Q. Judge

For planing hulls, dynamic lift reduces the submergence of the hull, allowing small motions to result in large changes in hydrodynamic forces and moments. The dynamic lift forces acting on the bottom of a planing hull dominate the hydrodynamics and these lift forces are known to depend on speed and wetted surface. As a planing boat rolls the wetted surface changes, which affects the dynamic lift. A series of tests using a wooden prismatic planing hull model with a constant deadrise of 20 degrees were done at static heel and heave positions as well as oscillating heave conditions. This paper presents the results from these experiments, primarily looking at the hydrodynamic coefficients in heave as a function of heel angle and exploring the coupling between these motions for a prismatic high-speed planing hull.


2018 ◽  
Vol 841 ◽  
pp. 167-202 ◽  
Author(s):  
Chaitanya D. Ghodke ◽  
Sourabh V. Apte

A numerical investigation of unsteady hydrodynamic forces on the particle bed in an oscillatory flow environment is performed by means of direct numerical simulations. Statistical descriptions of drag and lift forces for two particle sizes of diameter 372 and 125 in wall units in a very rough turbulent flow regime are reported. Characterization of unsteady forces in terms of spatial distribution, temporal autocorrelation, force spectrum as well as cross-correlations with measurable flow variables is carried out. Based on the concept of impulse, intermittency in the drag and lift forces is also investigated. Temporal correlations show drag and lift to be positively correlated with a time delay that is approximately equal to the Taylor micro-scale related to the drag/lift fluctuations. The force spectra for drag and lift reveal roughly two scaling regions, $-11/3$ and $-7/3$; the former typically represents turbulence–mean-shear interactions, whereas the latter indicates dominance of turbulence–turbulence interactions. Particle forces are strongly correlated with streamwise velocity and pressure fluctuations in the near-bed region for both flow cases. In comparison to the large-diameter particle case, the spatial extent of these correlations is 2–3 times larger in homogeneous directions for the small sized particle, a feature that is reminiscent of longer near-bed structures. For both large- and small-particle cases, it is shown that the distributions of drag (lift) fluctuations, in particular, peakedness and long tails, match remarkably well with fourth-order Gram–Charlier distributions of velocity (pressure) fluctuations. Furthermore, it is demonstrated that the intermittency is larger in the case of the lift force compared to that for the drag in both flow cases. Distributions of impulse events are heavily and positively skewed and are well described by a generalized extreme value distribution.


2009 ◽  
Vol 620 ◽  
pp. 195-220 ◽  
Author(s):  
K. LAM ◽  
Y. F. LIN

Three-dimensional numerical simulations of laminar flow around a circular cylinder with sinusoidal variation of cross-section along the spanwise direction, named ‘wavy cylinder’, are performed. A series of wavy cylinders with different combinations of dimensionless wavelength (λ/Dm) and wave amplitude (a/Dm) are studied in detail at a Reynolds number of Re = U∞Dm/ν = 100, where U∞ is the free-stream velocity and Dm is the mean diameter of a wavy cylinder. The results of variation of mean drag coefficient and root mean square (r.m.s.) lift coefficient with dimensionless wavelength show that significant reduction of mean and fluctuating force coefficients occurs at optimal dimensionless wavelengths λ/Dm of around 2.5 and 6 respectively for the different amplitudes studied. Based on the variation of flow structures and force characteristics, the dimensionless wavelength from λ/Dm = 1 to λ/Dm = 10 is classified into three wavelength regimes corresponding to three types of wake structures. The wake structures at the near wake of different wavy cylinders are captured. For all wavy cylinders, the flow separation line varies along the spanwise direction. This leads to the development of a three-dimensional free shear layer with periodic repetition along the spanwise direction. The three-dimensional free shear layer of the wavy cylinder is larger and more stable than that of the circular cylinder, and in some cases the free shear layer even does not roll up into a mature vortex street behind the cylinder. As a result, the mean drag coefficients of some of the typical wavy cylinders are less than that of a corresponding circular cylinder with a maximum drag coefficient reduction up to 18%. The r.m.s. lift coefficients are greatly reduced to practically zero at optimal wavelengths. In the laminar flow regime (60 ≤ Re ≤ 150), the values of optimal wavelength are Reynolds number dependent.


Author(s):  
Chaitanya D. Ghodke ◽  
Sourabh V. Apte

Particle-resolved direct numerical simulations are performed using fictitious domain approach [1] to investigate the effect of an oscillatory flow field over a rough wall made up of a regular hexagonal pack of fixed spherical particles, in a setup similar to the experimental configuration of [2]. Turbulent flows at Reynolds numbers, Reδ = 200 and 400 (based on the Stokes-layer thickness δ) are studied. The unsteady nature of hydrodynamic forces on particles and their cross-correlations with measurable flow variables are investigated. Temporal correlations showed drag and lift to be positively correlated with a phase difference, which is approximately equal to the Taylor micro-scale related to drag/lift correlations. Spatio-temporal correlations between the flow field and particle-related quantities showed that the lift force is well correlated with the streamwise velocity fluctuations up to distances of the same order as the particle diameter, beyond which the cross correlation decays considerably. On the other hand, the pressure fluctuations are correlated and anti-correlated with the lift force in the front and aft regions of the particle, respectively, as a result of wake effects. Further statistical analyses showed that the near-bed velocity and pressure fluctuations fit poorly with Gaussian distributions. Instead, a fourth order Gram-Charlier distribution model is proposed that may have consequences on the Gaussian descriptions of sediment pick-up functions typically used in quantification of turbulent transport of sediment particles.


Author(s):  
Ming-ming Liu

Viscous flow past two circular cylinders in tandem arrangement is numerically investigated at a typical Reynolds number of 200 which is based on the diameter of the downstream cylinder. The non-dimensional diameter of the downstream cylinder D is fixed to be 1.0, while the non-dimensional diameter of the upstream cylinder d varies from 0.1 to 1.0 with an interval of 0.1. Moreover, the minimal non-dimensional distance between the two cylinders changes from 0.1 to 4.0. The numerical results show that continuous variation of the mean drag coefficient, the lift coefficient, and the lift frequency is observed with the increase in the gap ratio for d/ D = 0.1 and 0.2. Discontinuities are found for the mean drag coefficient, the lift coefficient, and the lift frequency of the downstream cylinder with the increase in gap ratio for d/ D = 0.9 and 1.0. Multiple lift oscillating frequencies of the downstream cylinder can be detected for d/ D = 0.3–0.8 at special gap ratios. Special attention is paid on d/ D = 0.4, which is a typical example for d/ D = 0.3–0.8. The predominant lift frequency of the downstream cylinder is observed to change from fL-1 to fL-2 as the increase in the gap ratio for d/ D = 0.4, which have not been previously detected. However, the predominant drag frequency of the downstream cylinder is found always to be fD-3 in present investigation scope. Moreover, a conclusion that fD-3 =  fL-1 +  fL-2 can be obtained.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
J. F. McClean ◽  
D. Sumner

The flow around a surface-mounted finite-height square prism was investigated using a low-speed wind tunnel. The experiments were conducted at a Reynolds number of Re = 7.3 × 104 for prism aspect ratios of AR = 3, 5, 7, 9, and 11 and incidence angles from α = 0 deg to 45 deg. The thickness of the boundary layer on the ground plane relative to the side length was δ/D = 1.5. Measurements of the vortex shedding frequency were made with a single-component hot-wire probe, and measurements of the mean drag and lift forces were obtained with a force balance. For all aspect ratios and incidence angles, the mean drag coefficient and Strouhal number were lower than those of an infinite prism, while the mean lift coefficient was of nearly similar magnitude. As the aspect ratio was increased from AR = 3 to 11, the force coefficients and Strouhal number slowly approached the infinite-square-prism data. The mean drag coefficient and Strouhal number for the finite prism were less sensitive to changes in incidence angle compared to the infinite square prism. The critical incidence angle, corresponding to minimum mean drag coefficient, minimum (most negative) mean lift coefficient, and maximum Strouhal number, shifted to a higher incidence angle compared to the infinite square prism, with values ranging from αcritical = 15 deg to 18 deg; this shift was greatest for the prisms of higher aspect ratio. The behavior of the force coefficients and Strouhal number for the prism of AR = 3 was distinct from the other prisms (with lower values of mean drag coefficient and mean lift coefficient magnitude, and a different Strouhal number trend), suggesting the critical aspect ratio was between AR = 5 and AR = 3 in these experiments. In the wall-normal direction, the power spectra for AR = 11 and 9 tended to have weaker and/or more broad-banded vortex shedding peaks near the ground plane and near the free end at α = 0 deg and 15 deg. For AR = 7 to 3, well-defined vortex shedding peaks were detected along the entire height of the prisms. For AR = 11 and 9, at α = 30 deg and 45 deg, vortex shedding peaks were absent in the power spectra in the upper part of the wake.


2011 ◽  
Vol 138-139 ◽  
pp. 229-233
Author(s):  
Pei Qing Liu ◽  
Shuo Yang ◽  
Yun Tian

During airplane’s take-off, higher lift force should be provided by wing used high lift devices, and the drag should be lower. The design basis of high lift devices with good aerodynamic characteristic is the design of the multi-element airfoil. When a multi-element airfoil is used Gurney flap, lift coefficient can be improved while drag coefficient is also increased, but the lift-to-drag ratio is reduced. In this paper, the numerical simulation method is used to study the aerodynamic characteristic of the multi-element airfoil used Gurney flap with slat in the configuration of take-off. Lift coefficient and drag coefficient of the multi-element airfoil with Gurney flap can be reduced by slat while lift-to-drag ratio of airfoil is increased. Through the comparisons of the multi-element airfoils with Gurney flap with different types of slats, the optimized multi-element airfoil with higher lift coefficient and lower drag coefficient is obtained ultimately.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Kambiz Divsalar ◽  
Rouzbeh Shafaghat ◽  
Mousa Farhadi ◽  
Rezvan Alamian

AbstractIn this paper, we present a study of an underwater glider with a cylindrical body, a conical end shape and a spherical nose with NACA0009 airfoil wings. In the experimental section, we investigate the hydrodynamic coefficients of drag and lift as well as the torque on the glider then analyze the launch velocity, launch angles, angular velocity, and displacement range as the main parameters for evaluating of motion dynamics. In the numerical section, we investigate the optimal performance of the glider using the meta-heuristic optimization method in order to find the path and range of motion of the moving mass and control of the sea glider, which is very important for navigation scope. To be specific, body and wings hydrodynamic coefficients are obtained in the velocity range of [0.2, 1] $$m/s$$ m / s ; According to the results, the drag coefficient increases with increasing velocity, while the lift coefficient increases up to velocity of $$0.8 m/s$$ 0.8 m / s , then decreases at velocity of $$1 m/s$$ 1 m / s . Also, the wing drag coefficient decreases with increasing velocity, while the wing lift coefficient increases with increasing velocity. In the next step, in order to calculate an optimum ratio between obtained depth and horizontal distance, the designed algorithm investigate the glider launch angle and finally, the 10 degrees launch angle is chosen as the optimum angle. Subsequently, the analysis performed on mass center displacement range shows that the oscillation interval $$[- 0.045, 0.085]$$ [ - 0.045 , 0.085 ]  $$m$$ m is an optimum displacement domain.


Author(s):  
John F. McClean ◽  
David Sumner

The flow around a surface-mounted square prism of finite height was investigated experimentally using a low-speed wind tunnel. Of interest were the effects of aspect ratio and incidence angle on the mean aerodynamic forces and vortex shedding. Compared to the case of the “infinite” (or two-dimensional) square prism, the flow around the finite square prism has not been extensively studied. The experiments were conducted at a Reynolds number of Re = 7.2 × 104 for aspect ratios of AR = 3, 5, 7, 9, and 11 and incidence angles of α = 0°, 15°, 30° and 45°. The thickness of the boundary layer on the ground plane relative to the side length was δ/D = 1.5. Measurements of the vortex shedding frequency were made with a single-component hot-wire probe in the wake, and measurements of the mean drag and lift forces were obtained with a force balance. For all aspect ratios and incidence angles, the Strouhal number and the mean drag coefficient were lower than those of an infinite prism, while the mean lift coefficient was of nearly similar magnitude. As the aspect ratio was increased from AR = 3 to 11, the force coefficients and Strouhal number slowly approached the infinite-square-prism data. The behaviours of the mean drag coefficient and Strouhal number with incidence angle were less sensitive compared to the case of the infinite square prism, although a minimum mean drag coefficient, minimum (most negative) mean lift coefficient, and maximum Strouhal number were found at α = 15°. The reduced sensitivity to incidence angle is attributed to the complex three-dimensional flow over the free end of the prism and the downwash flow that enters the near wake. The behaviour of the force coefficients and Strouhal number for the prism of AR = 3 was distinct from the other prisms (with lower values of drag coefficient and lift coefficient magnitude, and a different Strouhal number trend), suggesting the critical aspect ratio was between AR = 5 and AR = 3 in these experiments. In the wall-normal direction, the power spectra for AR = 11 and 9 tended to have weaker and/or more broad-banded vortex shedding peaks near the ground plane and near the free end at α = 0° and 15°. For AR = 7 to 3, well-defined vortex shedding peaks were detected along the entire height of the prisms. For AR = 11 and 9, at α = 30° and 45°, vortex shedding peaks were absent in the power spectra in the upper part of the wake.


Sign in / Sign up

Export Citation Format

Share Document