scholarly journals DM: Dehghani Method for Modifying Optimization Algorithms

2020 ◽  
Vol 10 (21) ◽  
pp. 7683 ◽  
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Ali Dehghani ◽  
Haidar Samet ◽  
Carlos Sotelo ◽  
...  

In recent decades, many optimization algorithms have been proposed by researchers to solve optimization problems in various branches of science. Optimization algorithms are designed based on various phenomena in nature, the laws of physics, the rules of individual and group games, the behaviors of animals, plants and other living things. Implementation of optimization algorithms on some objective functions has been successful and in others has led to failure. Improving the optimization process and adding modification phases to the optimization algorithms can lead to more acceptable and appropriate solution. In this paper, a new method called Dehghani method (DM) is introduced to improve optimization algorithms. DM effects on the location of the best member of the population using information of population location. In fact, DM shows that all members of a population, even the worst one, can contribute to the development of the population. DM has been mathematically modeled and its effect has been investigated on several optimization algorithms including: genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), teaching-learning-based optimization (TLBO), and grey wolf optimizer (GWO). In order to evaluate the ability of the proposed method to improve the performance of optimization algorithms, the mentioned algorithms have been implemented in both version of original and improved by DM on a set of twenty-three standard objective functions. The simulation results show that the modified optimization algorithms with DM provide more acceptable and competitive performance than the original versions in solving optimization problems.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5214
Author(s):  
Mohammad Dehghani ◽  
Štěpán Hubálovský ◽  
Pavel Trojovský

Numerous optimization problems designed in different branches of science and the real world must be solved using appropriate techniques. Population-based optimization algorithms are some of the most important and practical techniques for solving optimization problems. In this paper, a new optimization algorithm called the Cat and Mouse-Based Optimizer (CMBO) is presented that mimics the natural behavior between cats and mice. In the proposed CMBO, the movement of cats towards mice as well as the escape of mice towards havens is simulated. Mathematical modeling and formulation of the proposed CMBO for implementation on optimization problems are presented. The performance of the CMBO is evaluated on a standard set of objective functions of three different types including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal. The results of optimization of objective functions show that the proposed CMBO has a good ability to solve various optimization problems. Moreover, the optimization results obtained from the CMBO are compared with the performance of nine other well-known algorithms including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Teaching-Learning-Based Optimization (TLBO), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Marine Predators Algorithm (MPA), Tunicate Swarm Algorithm (TSA), and Teamwork Optimization Algorithm (TOA). The performance analysis of the proposed CMBO against the compared algorithms shows that CMBO is much more competitive than other algorithms by providing more suitable quasi-optimal solutions that are closer to the global optimal.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1190
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Štěpán Hubálovský

There are many optimization problems in the different disciplines of science that must be solved using the appropriate method. Population-based optimization algorithms are one of the most efficient ways to solve various optimization problems. Population-based optimization algorithms are able to provide appropriate solutions to optimization problems based on a random search of the problem-solving space without the need for gradient and derivative information. In this paper, a new optimization algorithm called the Group Mean-Based Optimizer (GMBO) is presented; it can be applied to solve optimization problems in various fields of science. The main idea in designing the GMBO is to use more effectively the information of different members of the algorithm population based on two selected groups, with the titles of the good group and the bad group. Two new composite members are obtained by averaging each of these groups, which are used to update the population members. The various stages of the GMBO are described and mathematically modeled with the aim of being used to solve optimization problems. The performance of the GMBO in providing a suitable quasi-optimal solution on a set of 23 standard objective functions of different types of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal is evaluated. In addition, the optimization results obtained from the proposed GMBO were compared with eight other widely used optimization algorithms, including the Marine Predators Algorithm (MPA), the Tunicate Swarm Algorithm (TSA), the Whale Optimization Algorithm (WOA), the Grey Wolf Optimizer (GWO), Teaching–Learning-Based Optimization (TLBO), the Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and the Genetic Algorithm (GA). The optimization results indicated the acceptable performance of the proposed GMBO, and, based on the analysis and comparison of the results, it was determined that the GMBO is superior and much more competitive than the other eight algorithms.


2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC’17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


Author(s):  
Umit Can ◽  
Bilal Alatas

The classical optimization algorithms are not efficient in solving complex search and optimization problems. Thus, some heuristic optimization algorithms have been proposed. In this paper, exploration of association rules within numerical databases with Gravitational Search Algorithm (GSA) has been firstly performed. GSA has been designed as search method for quantitative association rules from the databases which can be regarded as search space. Furthermore, determining the minimum values of confidence and support for every database which is a hard job has been eliminated by GSA. Apart from this, the fitness function used for GSA is very flexible. According to the interested problem, some parameters can be removed from or added to the fitness function. The range values of the attributes have been automatically adjusted during the time of mining of the rules. That is why there is not any requirements for the pre-processing of the data. Attributes interaction problem has also been eliminated with the designed GSA. GSA has been tested with four real databases and promising results have been obtained. GSA seems an effective search method for complex numerical sequential patterns mining, numerical classification rules mining, and clustering rules mining tasks of data mining.


2021 ◽  
Vol 11 (10) ◽  
pp. 4382
Author(s):  
Ali Sadeghi ◽  
Sajjad Amiri Doumari ◽  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Pavel Trojovský ◽  
...  

Optimization is the science that presents a solution among the available solutions considering an optimization problem’s limitations. Optimization algorithms have been introduced as efficient tools for solving optimization problems. These algorithms are designed based on various natural phenomena, behavior, the lifestyle of living beings, physical laws, rules of games, etc. In this paper, a new optimization algorithm called the good and bad groups-based optimizer (GBGBO) is introduced to solve various optimization problems. In GBGBO, population members update under the influence of two groups named the good group and the bad group. The good group consists of a certain number of the population members with better fitness function than other members and the bad group consists of a number of the population members with worse fitness function than other members of the population. GBGBO is mathematically modeled and its performance in solving optimization problems was tested on a set of twenty-three different objective functions. In addition, for further analysis, the results obtained from the proposed algorithm were compared with eight optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), teaching–learning-based optimization (TLBO), gray wolf optimizer (GWO), and the whale optimization algorithm (WOA), tunicate swarm algorithm (TSA), and marine predators algorithm (MPA). The results show that the proposed GBGBO algorithm has a good ability to solve various optimization problems and is more competitive than other similar algorithms.


Author(s):  
Abhishek Sharma ◽  
Abhinav Sharma ◽  
Averbukh Moshe ◽  
Nikhil Raj ◽  
Rupendra Kumar Pachauri

In the field of renewable energy, the extraction of parameters for solar photovoltaic (PV) cells is a widely studied area of research. Parameter extraction of solar PV cell is a highly non-linear complex optimization problem. In this research work, the authors have explored grey wolf optimization (GWO) algorithm to estimate the optimized value of the unknown parameters of a PV cell. The simulation results have been compared with five different pre-existing optimization algorithms: gravitational search algorithm (GSA), a hybrid of particle swarm optimization and gravitational search algorithm (PSOGSA), sine cosine (SCA), chicken swarm optimization (CSO) and cultural algorithm (CA). Furthermore, a comparison with the algorithms existing in the literature is also carried out. The comparative results comprehensively demonstrate that GWO outperforms the existing optimization algorithms in terms of root mean square error (RMSE) and the rate of convergence. Furthermore, the statistical results validate and indicate that GWO algorithm is better than other algorithms in terms of average accuracy and robustness. An extensive comparison of electrical performance parameters: maximum current, voltage, power, and fill factor (FF) has been carried out for both PV model.


Author(s):  
Saeed Hosseinaei ◽  
Mohammad Reza Ghasemi ◽  
Sadegh Etedali

Vibration control devices have recently been used in structures subjected to wind and earthquake excitations. The optimal design problems of the passive control device and the feedback gain matrix of the controller for the seismic-excited structures are some attractive problems for researches to develop optimization algorithms with the advancement in terms of simplicity, accuracy, speed, and efficacy. In this paper, a new modified teaching–learning-based optimization (TLBO) algorithm, known as MTLBO, is proposed for the problems. For some benchmark optimization functions and constrained engineering problems, the validity, efficacy, and reliability of the MTLBO are firstly assessed and compared to other optimization algorithms in the literature. The undertaken statistical indicate that the MTLBO performs better and reliable than some other algorithms studied here. The performance of the MTLBO will then be explored for two passive and active structural control problems. It is concluded that the MTLBO algorithm is capable of giving better results than conventional TLBO. Hence, its utilization as a simple, fast, and powerful optimization tool to solve particular engineering optimization problems is recommended.


Author(s):  
Sen Zhang ◽  
Qifang Luo ◽  
Yongquan Zhou

To overcome the poor population diversity and slow convergence rate of grey wolf optimizer (GWO), this paper introduces the elite opposition-based learning strategy and simplex method into GWO, and proposes a hybrid grey optimizer using elite opposition (EOGWO). The diversity of grey wolf population is increased and exploration ability is improved. The experiment results of 13 standard benchmark functions indicate that the proposed algorithm has strong global and local search ability, quick convergence rate and high accuracy. EOGWO is also effective and feasible in both low-dimensional and high-dimensional case. Compared to particle swarm optimization with chaotic search (CLSPSO), gravitational search algorithm (GSA), flower pollination algorithm (FPA), cuckoo search (CS) and bat algorithm (BA), the proposed algorithm shows a better optimization performance and robustness.


Author(s):  
Upma Jain ◽  
Ritu Tiwari ◽  
W. Wilfred Godfrey

This chapter concerns the problem of odor source localization by a team of mobile robots. A brief overview of odor source localization is given which is followed by related work. Three methods are proposed for odor source localization. These methods are largely inspired by gravitational search algorithm, grey wolf optimizer, and particle swarm optimization. Objective of the proposed approaches is to reduce the time required to localize the odor source by a team of mobile robots. The intensity of odor across the plume area is assumed to follow the Gaussian distribution. Robots start search from the corner of the workspace. As robots enter in the vicinity of plume area, they form groups using K-nearest neighbor algorithm. To avoid stagnation of the robots at local optima, search counter concept is used. Proposed approaches are tested and validated through simulation.


Author(s):  
Ying-Ying Koay ◽  
Jian-Ding Tan ◽  
Chin-Wai Lim ◽  
Siaw-Paw Koh ◽  
Sieh-Kiong Tiong ◽  
...  

<span>Optimization algorithm has become one of the most studied branches in the fields of artificial intelligent and soft computing. Many powerful optimization algorithms with global search ability can be found in the literature. Gravitational Search Algorithm (GSA) is one of the relatively new population-based optimization algorithms. In this research, an Adaptive Gravitational Search Algorithm (AGSA) is proposed. The AGSA is enhanced with an adaptive search step local search mechanism. The adaptive search step begins the search with relatively larger step size, and automatically fine-tunes the step size as iterations go. This enhancement grants the algorithm a more powerful exploitation ability, which in turn grants solutions with higher accuracies. The proposed AGSA was tested in a test suit with several well-established optimization test functions. The results showed that the proposed AGSA out-performed other algorithms such as conventional GSA and Genetic Algorithm in the benchmarking of speed and accuracy. It can thus be concluded that the proposed AGSA performs well in solving local and global optimization problems. Applications of the AGSA to solve practical engineering optimization problems can be considered in the future.</span>


Sign in / Sign up

Export Citation Format

Share Document