scholarly journals CNN Classification Architecture Study for Turbulent Free-Space and Attenuated Underwater Optical OAM Communications

2020 ◽  
Vol 10 (24) ◽  
pp. 8782
Author(s):  
Patrick L. Neary ◽  
Abbie T. Watnik ◽  
Kyle Peter Judd ◽  
James R. Lindle ◽  
Nicholas S. Flann

Turbulence and attenuation are signal degrading factors that can severely hinder free-space and underwater OAM optical pattern demultiplexing. A variety of state-of-the-art convolutional neural network architectures are explored to identify which, if any, provide optimal performance under these non-ideal environmental conditions. Hyperparameter searches are performed on the architectures to ensure that near-ideal settings are used for training. Architectures are compared in various scenarios and the best performing, with their settings, are provided. We show that from the current state-of-the-art architectures, DenseNet outperforms all others when memory is not a constraint. When memory footprint is a factor, ShuffleNet is shown to performed the best.

2018 ◽  
Author(s):  
Brian Q. Geuther ◽  
Sean P. Deats ◽  
Kai J. Fox ◽  
Steve A. Murray ◽  
Robert E. Braun ◽  
...  

AbstractThe ability to track animals accurately is critical for behavioral experiments. For video-based assays, this is often accomplished by manipulating environmental conditions to increase contrast between the animal and the background, in order to achieve proper foreground/background detection (segmentation). However, as behavioral paradigms become more sophisticated with ethologically relevant environments, the approach of modifying environmental conditions offers diminishing returns, particularly for scalable experiments. Currently, there is a need for methods to monitor behaviors over long periods of time, under dynamic environmental conditions, and in animals that are genetically and behaviorally heterogeneous. To address this need, we developed a state-of-the-art neural network-based tracker for mice, using modern machine vision techniques. We test three different neural network architectures to determine their performance on genetically diverse mice under varying environmental conditions. We find that an encoder-decoder segmentation neural network achieves high accuracy and speed with minimal training data. Furthermore, we provide a labeling interface, labeled training data, tuned hyperparameters, and a pre-trained network for the mouse behavior and neuroscience communities. This general-purpose neural network tracker can be easily extended to other experimental paradigms and even to other animals, through transfer learning, thus providing a robust, generalizable solution for biobehavioral research.


2018 ◽  
Vol 232 ◽  
pp. 01061
Author(s):  
Danhua Li ◽  
Xiaofeng Di ◽  
Xuan Qu ◽  
Yunfei Zhao ◽  
Honggang Kong

Pedestrian detection aims to localize and recognize every pedestrian instance in an image with a bounding box. The current state-of-the-art method is Faster RCNN, which is such a network that uses a region proposal network (RPN) to generate high quality region proposals, while Fast RCNN is used to classifiers extract features into corresponding categories. The contribution of this paper is integrated low-level features and high-level features into a Faster RCNN-based pedestrian detection framework, which efficiently increase the capacity of the feature. Through our experiments, we comprehensively evaluate our framework, on the Caltech pedestrian detection benchmark and our methods achieve state-of-the-art accuracy and present a competitive result on Caltech dataset.


2020 ◽  
Vol 10 (2) ◽  
pp. 469 ◽  
Author(s):  
Athanasios Anagnostis ◽  
Gavriela Asiminari ◽  
Elpiniki Papageorgiou ◽  
Dionysis Bochtis

Anthracnose is a fungal disease that infects a large number of trees worldwide, damages intensively the canopy, and spreads with ease to neighboring trees, resulting in the potential destruction of whole crops. Even though it can be treated relatively easily with good sanitation, proper pruning and copper spraying, the main issue is the early detection for the prevention of spreading. Machine learning algorithms can offer the tools for the on-site classification of healthy and affected leaves, as an initial step towards managing such diseases. The purpose of this study was to build a robust convolutional neural network (CNN) model that is able to classify images of leaves, depending on whether or not these are infected by anthracnose, and therefore determine whether a tree is infected. A set of images were used both in grayscale and RGB mode, a fast Fourier transform was implemented for feature extraction, and a CNN architecture was selected based on its performance. Finally, the best performing method was compared with state-of-the-art convolutional neural network architectures.


Author(s):  
K. Rahmani ◽  
H. Mayer

In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF), Region Proposal Network (RPN) based on a Convolutional Neural Network (CNN) as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.


2017 ◽  
Vol 17 (5) ◽  
pp. 1110-1128 ◽  
Author(s):  
Deegan J Atha ◽  
Mohammad R Jahanshahi

Corrosion is a major defect in structural systems that has a significant economic impact and can pose safety risks if left untended. Currently, an inspector visually assesses the condition of a structure to identify corrosion. This approach is time-consuming, tedious, and subjective. Robotic systems, such as unmanned aerial vehicles, paired with computer vision algorithms have the potential to perform autonomous damage detection that can significantly decrease inspection time and lead to more frequent and objective inspections. This study evaluates the use of convolutional neural networks for corrosion detection. A convolutional neural network learns the appropriate classification features that in traditional algorithms were hand-engineered. Eliminating the need for dependence on prior knowledge and human effort in designing features is a major advantage of convolutional neural networks. This article presents different convolutional neural network–based approaches for corrosion assessment on metallic surfaces. The effect of different color spaces, sliding window sizes, and convolutional neural network architectures are discussed. To this end, the performance of two pretrained state-of-the-art convolutional neural network architectures as well as two proposed convolutional neural network architectures are evaluated, and it is shown that convolutional neural networks outperform state-of-the-art vision-based corrosion detection approaches that are developed based on texture and color analysis using a simple multilayered perceptron network. Furthermore, it is shown that one of the proposed convolutional neural networks significantly improves the computational time in contrast with state-of-the-art pretrained convolutional neural networks while maintaining comparable performance for corrosion detection.


2019 ◽  
Vol 28 (supp01) ◽  
pp. 1940004 ◽  
Author(s):  
Peng Guo ◽  
Hong Ma ◽  
Ruizhi Chen ◽  
Donglin Wang

Although the convolutional neural network (CNN) has exhibited outstanding performance in various applications, the deployment of CNN on embedded and mobile devices is limited by the massive computations and memory footprint. To address these challenges, Courbariaux and co-workers put forward binarized neural network (BNN) which quantizes both the weights and activations to [Formula: see text]1. From the perspective of hardware, BNN can greatly simplify the computation and reduce the storage. In this work, we first present the algorithm optimizations to further binarize the first layer and the padding bits of BNN; then we propose a fully binarized CNN accelerator. With the Shuffle–Compute structure and the memory-aware computation schedule scheme, the proposed design can boost the performance for feature maps of different sizes and make full use of the memory bandwidth. To evaluate our design, we implement the accelerator on the Zynq ZC702 board, and the experiments on the SVHN and CIFAR-10 datasets show the state-of-the-art performance efficiency and resource efficiency.


Author(s):  
Masanori Suganuma ◽  
Shinichi Shirakawa ◽  
Tomoharu Nagao

We propose a method for designing convolutional neural network (CNN) architectures based on Cartesian genetic programming (CGP). In the proposed method, the architectures of CNNs are represented by directed acyclic graphs, in which each node represents highly-functional modules such as convolutional blocks and tensor operations, and each edge represents the connectivity of layers. The architecture is optimized to maximize the classification accuracy for a validation dataset by an evolutionary algorithm. We show that the proposed method can find competitive CNN architectures compared with state-of-the-art methods on the image classification task using CIFAR-10 and CIFAR-100 datasets.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Enes Yiğit ◽  
Umut Özkaya ◽  
Şaban Öztürk ◽  
Dilbag Singh ◽  
Hassène Gritli

Power quality disturbance (PQD) is essential for devices consuming electricity and meeting today’s energy trends. This study contains an effective artificial intelligence (AI) framework for analyzing single or composite defects in power quality. A convolutional neural network (CNN) architecture, which has an output powered by a gated recurrent unit (GRU), is designed for this purpose. The proposed framework first obtains a matrix using a short-time Fourier transform (STFT) of PQD signals. This matrix contains the representation of the signal in the time and frequency domains, suitable for CNN input. Features are automatically extracted from these matrices using the proposed CNN architecture without preprocessing. These features are classified using the GRU. The performance of the proposed framework is tested using a dataset containing a total of seven single and composite defects. The amount of noise in these examples varies between 20 and 50 dB. The performance of the proposed method is higher than current state-of-the-art methods. The proposed method obtained 98.44% ACC, 98.45% SEN, 99.74% SPE, 98.45% PRE, 98.45% F1-score, 98.19% MCC, and 93.64% kappa metric. A novel power quality disturbance (PQD) system has been proposed, and its application has been represented in our study. The proposed system could be used in the industry and factory.


Sign in / Sign up

Export Citation Format

Share Document