scholarly journals The Determination of Pullout Parameters for Sand with a Geogrid

2020 ◽  
Vol 11 (1) ◽  
pp. 355
Author(s):  
Kyungho Park ◽  
Daehyeon Kim ◽  
Jongbeom Park ◽  
Hyunho Na

The concept of designing mechanically stabilized earth (MSE) walls is divided into internal and external stability review methods, and one of the design factors required in internal stability analysis is the frictional characteristics between soil and geogrids for civil engineering applications. Typical methods for evaluating the frictional characteristics between soil and geogrids include the direct shear test and pullout test. It is desirable to apply the pullout test to geogrid reinforcements for pulling out geogrids embedded in soil, to measure both the surface-frictional force and passive resistance at the same time. Pullout parameters can be significantly affected by confining the stress and tensile strength of reinforcements. In general, the pullout parameters tend to be overestimated for low confining stresses in the pullout test, and underestimated for high confining stresses. Therefore, to address these issues, this study aims to evaluate the influence of the confining stress and the tensile strength of a geogrid reinforcement in the pullout test, and to propose a reasonable method for obtaining practical pullout parameters. Based on the pullout tests, the maximum pullout force depending on the tensile strength of the geogrid reinforcement was measured for one-third of the reinforcement tensile strength, and it was ruptured when pullout force greater than the maximum pullout force was exerted. Furthermore, it was observed that, in the reinforcement pullout test, pullout force was measured in the whole area of the reinforcement at a confining stress smaller than one-half of the tensile strength of the grid. As a result, the effective confining stress method considering only the confining stress at which the reinforcement is fully pulled out to develop the pullout characteristics can be a practical method for obtaining pullout parameters without regard to the reinforcement tensile strength.

2017 ◽  
Vol 54 (5) ◽  
pp. 621-630 ◽  
Author(s):  
S.H. Sadat Taghavi ◽  
M. Mosallanezhad

The pullout resistance of reinforcement, such as geogrids in mechanically stabilized earth (MSE) walls, includes the skin friction between the soil and solid geogrid surfaces. It also includes the bearing resistance against the transverse ribs, which has a greater influence on the production of pullout resistance. Taking the current limitations involved in producing woven polyester geogrids into consideration (i.e., the limited thickness of the transverse ribs), the amount of bearing resistance developed in front of transverse ribs is limited in the pullout mechanism. Thus, along with introducing an innovative and applied system, this research has endeavoured to demonstrate the effective performance of this new system in increasing the passive resistance — and thereby the pullout resistance — of standard geogrids. This new system, which is formed by adding steel transverse elements (a set of steel equal angles) to the ordinary polyester geogrids by means of nuts and bolts, is called an anchored geogrid (AG). The experimental results show that a spacing-to-height ratio of transversal elements equal to 5 gives the maximum pullout resistance for a polyester AG system in sandy soil used in the study. With an optimum arrangement, this system is capable of increasing the pullout resistance of the ordinary geogrid system by 65%. In addition, based on the plasticity solution, the pullout bearing failure mechanisms of a single isolated transverse element in the polyester AG system depend on overburden pressures.


Author(s):  
Richard J. Bathurst ◽  
Nezam Bozorgzadeh ◽  
Yoshihisa Miyata ◽  
Tony M. Allen

The paper demonstrates reliability-based design (RBD) and analysis for tensile strength (rupture) and pullout limit states for mechanically stabilized earth (MSE) walls constructed with steel grid reinforcement in combination with frictional soils. Five different reinforcement tensile load models for walls under operational conditions are considered in combination with six different pullout models and one tensile strength model. The general approach considers the accuracy of the load and resistance models that appear in each limit state equation plus uncertainty in the choice of nominal values at time of design that is linked to the concept of “level of understanding” that is used in Canadian load and resistance factor design (LRFD) foundation engineering practice. The effect of potential steel corrosion on reliability index for the tensile strength limit state is considered in calculations. A well-documented MSE wall case study is used to demonstrate the general approach. The relationship between nominal factor of safety and reliability index is used to demonstrate how to optimize steel grid member diameters and arrangement to achieve a target reliability index of β = 2.33. The approach described in this paper is an important contribution to next-generation analysis and design using modern concepts of RBD for MSE walls.


CivilEng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 14-34
Author(s):  
Konstantinos Tsiotsias ◽  
Stavroula J. Pantazopoulou

Experimental procedures used for the study of reinforcement to concrete bond have been hampered for a long time by inconsistencies and large differences in the obtained behavior, such as bond strength and mode of failure, depending on the specimen form and setup used in the test. Bond is controlled by the mechanics of the interface between reinforcement and concrete, and is sensitive to the influences of extraneous factors, several of which underlie, but are not accounted for, in conventional pullout test setups. To understand and illustrate the importance of specimen form and testing arrangement, a series of computational simulations are used in the present work on eight distinct variants of conventional bar pullout test setups that are used routinely in experimental literature for the characterization of bond-slip laws. The resulting bond strength increase generated by unaccounted confining stress fields that arise around the bar because of the boundary conditions of the test setup is used to classify the tests with respect to their relevance with the intended use of the results. Of the pullout setups examined, the direct tension pullout test produced the most conservative bond strength results, completely eliminating the contributions from eccentricity and passive confinement.


Author(s):  
Andrew M. Kasozi ◽  
Raj V. Siddharthan ◽  
Rajib Mahamud

Two-dimensional (2D) transient numerical thermal modeling was undertaken using ansys fluent v12.1 software to estimate distribution of soil backfill temperatures in a typical mechanically stabilized earth (MSE) wall. The modeling was calibrated using field-measured temperature data from the Tanque-Verde MSE wall in Tucson, Arizona (AZ) in which computed temperature data were found to be within ±5% of the field data. The calibrated model predictions for Las Vegas, Nevada (NV) showed an overall average soil backfill temperature of 34.3 °C relative to a maximum outside surface temperature of 51.6 °C. Such a high average soil backfill temperature calls for modification of design procedures since conventional designs are based on geosynthetic tensile strength determined at 20 °C.


Sign in / Sign up

Export Citation Format

Share Document