scholarly journals Time-Domain Aeroelasticity Analysis by a Tightly Coupled Fluid-Structural Interaction Methodology

2021 ◽  
Vol 11 (12) ◽  
pp. 5389
Author(s):  
Zhongyu Liu ◽  
Xueyuan Nie ◽  
Guannan Zheng ◽  
Guowei Yang

A tightly coupled fluid-structural interaction (FSI) methodology is developed for aeroelasticity analysis in the time domain. The preconditioned Navier–Stokes equations for all Mach numbers are employed and the structural equations are tightly coupled with the fluid equations by discretizing their time derivative term in the same pseudo time-stepping method. A modified mesh deformation method based on reduced control points radial basis functions (RBF) is utilized, and a RBF based mapping algorithm is introduced for data exchange on the interaction interface. To evaluate the methodology, the flutter boundary and the limit cycle oscillation of Isogai wing and the flutter boundary of AGARD 445.6 wing are analyzed and validated.

Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 50 ◽  
Author(s):  
Sk. Rahman ◽  
Adil Rasheed ◽  
Omer San

Numerical solution of the incompressible Navier–Stokes equations poses a significant computational challenge due to the solenoidal velocity field constraint. In most computational modeling frameworks, this divergence-free constraint requires the solution of a Poisson equation at every step of the underlying time integration algorithm, which constitutes the major component of the computational expense. In this study, we propose a hybrid analytics procedure combining a data-driven approach with a physics-based simulation technique to accelerate the computation of incompressible flows. In our approach, proper orthogonal basis functions are generated to be used in solving the Poisson equation in a reduced order space. Since the time integration of the advection–diffusion equation part of the physics-based model is computationally inexpensive in a typical incompressible flow solver, it is retained in the full order space to represent the dynamics more accurately. Encoder and decoder interface conditions are provided by incorporating the elliptic constraint along with the data exchange between the full order and reduced order spaces. We investigate the feasibility of the proposed method by solving the Taylor–Green vortex decaying problem, and it is found that a remarkable speed-up can be achieved while retaining a similar accuracy with respect to the full order model.


Author(s):  
M. Sergio Campobasso ◽  
Mohammad H. Baba-Ahmadi

This paper presents the numerical models underlying the implementation of a novel harmonic balance compressible Navier-Stokes solver with low-speed preconditioning for wind turbine unsteady aerodynamics. The numerical integration of the harmonic balance equations is based on a multigrid iteration, and, for the first time, a numerical instability associated with the use of such an explicit approach in this context is discussed and resolved. The harmonic balance solver with low-speed preconditioning is well suited for the analyses of several unsteady periodic low-speed flows, such as those encountered in horizontal axis wind turbines. The computational performance and the accuracy of the technology being developed are assessed by computing the flow field past two sections of a wind turbine blade in yawed wind with both the time- and frequency-domain solvers. Results highlight that the harmonic balance solver can compute these periodic flows more than 10 times faster than its time-domain counterpart, and with an accuracy comparable to that of the time-domain solver.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 568 ◽  
Author(s):  
Guangzhong Gao ◽  
Ledong Zhu ◽  
Feng Wang ◽  
Hua Bai ◽  
Jianming Hao

The nonlinear post-flutter instabilities were experimentally investigated through two-degree-of-freedom sectional model tests on a typical flat closed-box bridge deck (width-to-depth ratio 9.14). Laser displacement sensors and piezoelectric force balances were used in the synchronous measurement of dynamic displacement and aerodynamic force. Beyond linear flutter boundary, the sectional model exhibited heave-torsion coupled limit cycle oscillation (LCOs) with an unrestricted increase of stable amplitudes with reduced velocity. The post-critical LCOs vibrated in a complex mode with amplitude-dependent mode modulus and phase angle. Obvious heaving static deformation was found to be coupled with the large-amplitude post-critical LCOs, for which classical quasi-steady theory was not applicable. The aerodynamic torsional moment and lift during post-critical LCOs were measured through a novel wind-tunnel technique by 4 piezoelectric force balances. The measured force signals were found to contain significantly higher-order components. The energy evolution mechanism during post-critical LCOs was revealed via the hysteresis loops of the measured force signals.


Author(s):  
Salwa Fezai ◽  
Nader Ben-Cheikh ◽  
Brahim Ben-Beya ◽  
Taieb Lili

Purpose Two-dimensional incompressible fluid flows around a rectangular shape placed over a larger rectangular shape at low Reynolds numbers (Re) have been numerically analyzed in the present work. The vortex shedding is investigated at different arrangements of the two shapes allowing the investigation of three possible configurations. The calculations are carried out for several values of Re ranging from 1 to 200. The effect of the obstacle geometry on the vortex shedding is analyzed for crawling, steady and unsteady regimes. The analysis of the flow evolution shows that with increasing Re beyond a certain critical value, the flow becomes unstable and undergoes a bifurcation. This paper aims to observe that the transition of the unsteady regime is performed by a Hopf bifurcation. The critical Re beyond which the flow becomes unsteady is determined for each configuration. A special attention is paid to compute the drag and lift forces acting on the rectangular shapes, which allowed determining; the best configuration in terms of both drag and lift. The unsteady periodic wake is characterized by the Strouhal number, which varies with the Re and the obstacle geometry. Hence, the values of vortex shedding frequencies are calculated in this work. Design/methodology/approach The dimensionless Navier–Stokes equations were numerically solved using the following numerical technique based on the finite volume method. The temporal discretization of the time derivative is performed by an Euler backward second-order implicit scheme. Non-linear terms are evaluated explicitly; while, viscous terms are treated implicitly. The strong velocity–pressure coupling present in the continuity and the momentum equations are handled by implementing the projection method. Findings The present paper aims to numerically study the effect of the obstacle geometry on the vortex shedding and on the drag and lift forces to analyze the flow structure around three configurations at crawling, steady and unsteady regimes. Originality/value A special attention is paid to compute the drag and lift forces acting on the rectangular shapes, which allowed determining; the best shapes configuration in terms of both drag and lift.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
M. Sergio Campobasso ◽  
Mohammad H. Baba-Ahmadi

This paper presents the numerical models underlying the implementation of a novel harmonic balance compressible Navier-Stokes solver with low-speed preconditioning for wind turbine unsteady aerodynamics. The numerical integration of the harmonic balance equations is based on a multigrid iteration, and, for the first time, a numerical instability associated with the use of such an explicit approach in this context is discussed and resolved. The harmonic balance solver with low-speed preconditioning is well suited for the analyses of several unsteady periodic low-speed flows, such as those encountered in horizontal axis wind turbines. The computational performance and the accuracy of the technology being developed are assessed by computing the flow field past two sections of a wind turbine blade in yawed wind with both the time-and frequency-domain solvers. Results highlight that the harmonic balance solver can compute these periodic flows more than 10 times faster than its time-domain counterpart, and with an accuracy comparable to that of the time-domain solver.


2015 ◽  
Vol 07 (02) ◽  
pp. 1550021 ◽  
Author(s):  
Tao He

This paper presents a partitioned strong coupling algorithm for fluid–structure interaction in the arbitrary Lagrangian–Eulerian finite element framework. The incompressible Navier–Stokes equations are solved by the semi-implicit characteristic-based split (CBS) scheme while the structural equations are temporally advanced by the Bathe method. The celled-based smoothed finite element method is adopted for the solution of a geometrically nonlinear solid. To update the dynamic mesh, the moving submesh approach is performed in conjunction with the ortho-semi-torsional spring analogy method. A mass source term is implanted into the pressure Poisson equation to respect the geometric conservation law for the fractional-step-type CBS fluid solver. The iterative solution is achieved by fixed-point method with Aitken's Δ2 accelerator. The proposed methodology is validated against flow-induced oscillations of a bluff body and a flexible body. The overall numerical results agree well with the available data. Some important flow phenomena have been disclosed successfully.


2003 ◽  
Vol 125 (3) ◽  
pp. 677-685 ◽  
Author(s):  
C. Pankiewitz ◽  
T. Sattelmayer

A novel method for the simulation of combustion instabilities in annular combustors is presented. It is based on the idea to solve the equations governing the acoustics in the time domain and couple them to a model for the heat release in the flames. The linear wave equation describing the temporal and spatial evolution of the pressure fluctuations is implemented in a finite element code. Providing high flexibility, this code in principle allows both the computational domain to be of arbitrary shape and the mean flow to be included. This yields applicability to realistic technical combustors. The fluctuating heat release acting as a volume source appears as a source term in the equation to be solved. Employing a time-lag model, the heat release rate at each individual burner is related to the velocity in the corresponding burner at an earlier time. As saturation also is considered, a nonlinearity is introduced into the system. Starting the simulation from a random initial perturbation with suitable values for the parameters of the heat release model, a self-excited instability is induced, leading to a finite-amplitude limit cycle oscillation. The feasibility of the approach is demonstrated with three-dimensional simulations of a simple model annular combustor. The effect of the model parameters and of axial mean flow on the stability and the shape of the excited modes is shown.


Author(s):  
Ravi Kumar R. Tumkur ◽  
Ramon Calderer ◽  
Arif Masud ◽  
Lawrence A. Bergman ◽  
Alexander F. Vakakis ◽  
...  

We study the nonlinear fluid-structure interaction of an elastically supported rigid circular cylinder in a laminar flow. Periodic shedding of counter-rotating vortices from either side of the cylinder results in vortex-induced vibration of the cylinder. We demonstrate the passive suppression of the limit cycle oscillation (LCO) of the cylinder with the use of an essentially nonlinear element, the nonlinear energy sink (NES). The computational study is performed at a Reynolds number (Re) of 100; Re is defined based on the cylinder diameter and inlet velocity. The variational multiscale residual-based stabilized finite-element method is used to compute approximate solutions of the incompressible Navier-Stokes equations. The NES is comprised of a small mass, an essentially nonlinear spring, and a linear damper. With appropriate values for the NES parameters, the coupled system of flow-cylinder-NES exhibits resonant interactions, resulting in targeted energy transfer (TET) from the flow via the cylinder to the NES, where the energy is dissipated by the linear damper. The NES interacts with the fluid via the cylinder by altering the phase relation between the lift force and the cylinder displacement; this brings about significant reduction in the LCO amplitude of the cylinder for several set of values of the NES parameters.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Lucian Lupşa-Tătaru

Although of a great extent in time, the research works directed at studying transients in synchronous generators have not yet provided fully sufficient comparative studies in respect to sudden short circuits of the machine. The present paper puts forward novel and comprehensive process models for dynamic simulation of short circuit faults of initially unloaded synchronous generators, using the generalizedd-q-0 mathematical model as starting point in derivation. Distinct from the time-domain analysis, the technique proposed here allows an effective comparative overview by employing a specialized procedure to perform repeated time-domain simulations accompanied by peak values recording for the various circumstances. The time consuming matrix numerical inversion at each step of integration, usually performed when selecting currents as state variables, is eliminated by advancing the process models in a convenient split matrix form that allows the symbolic processing. Also, the computational efficiency is being increased by introducing a set of auxiliary variables common to different state equations. The models derivation is carried out without altering the structural equations of the generalizedd-q-0 mathematical model of synchronous generators whilst the simulation results are both compared and discussed in detail.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1972-1977
Author(s):  
Lang Li ◽  
Guo Ping Cheng ◽  
Guo Quan Zhu ◽  
Wei Zhang

Based on Navier-stokes equations, Weiss-Smith matrix preconditioning method is implemented within pseudo time derivative term. AUSM+-up family schemes and LU-SGS implicit iterative method were used to solve low speed flows and were compared with literature data and theoretical value. Through comparing calculation with the literature data and theoretical value, The Results showed the preconditioning algorithm can be applied efficiently to the low speeds flow field ,All these works built foundations for further application of chemical flows.


Sign in / Sign up

Export Citation Format

Share Document