scholarly journals A Novel Patient-to-Image Surface Registration Technique for ENT- and Neuro-Navigation Systems: Proper Point Set in Patient Space

2021 ◽  
Vol 11 (12) ◽  
pp. 5464
Author(s):  
Ahnryul Choi ◽  
Seungheon Chae ◽  
Tae-Hyong Kim ◽  
Hyunwoo Jung ◽  
Sang-Sik Lee ◽  
...  

Patient-to-medical image registration is a crucial factor that affects the accuracy of image-guided ENT- and neurosurgery systems. In this study, a novel registration protocol that extracts the point cloud in the patient space using the contact approach was proposed. To extract the optimal point cloud in patient space, we propose a multi-step registration protocol consisting of augmentation of the point cloud and creation of an optimal point cloud in patient space that satisfies the minimum distance from the point cloud in the medical image space. A hemisphere mathematical model and plastic facial phantom were used to validate the proposed registration protocol. An optical and electromagnetic tracking system, of the type that is commonly used in clinical practice, was used to acquire the point cloud in the patient space and evaluate the accuracy of the proposed registration protocol. The SRE and TRE of the proposed protocol were improved by about 30% and 50%, respectively, compared to those of a conventional registration protocol. In addition, TRE was reduced to about 28% and 21% in the optical and electromagnetic methods, respectively, thus showing improved accuracy. The new algorithm proposed in this study is expected to be applied to surgical navigation systems in the near future, which could increase the success rate of otolaryngological and neurological surgery.

2020 ◽  
Vol 10 (6) ◽  
pp. 1466-1472
Author(s):  
Hakje Yoo ◽  
Ahnryul Choi ◽  
Hyunggun Kim ◽  
Joung Hwan Mun

Surface registration is an important factor in surgical navigation in determining the success rate and stability of surgery by providing the operator with the exact location of a lesion. The problem of surface registration is that point cloud in the patient space is acquired at irregular intervals due to the operator’s tracking speed and method. The purpose of this study is to analyze the effect of irregular intervals of point cloud caused by tracking speed and method on the registration accuracy. For this study, we created the head phantom to obtain a point cloud in the patient space with a similar object to that of a patient and acquired a point cloud in a total of ten times. In order to analyze the accuracy of registration according to the interval, cubic spline interpolation was applied to the existing point cloud. Additionally, irregular intervals of the point cloud were regenerated into regular intervals. As a result of applying the regenerated point cloud to the surface registration, the surface registration error was not statistically different from the existing point cloud. However, the target registration error significantly lower (p < 0.01). These results indicate that the intervals of point cloud affect the accuracy of registration, and that point cloud with regular intervals can improve the surface registration accuracy.


2020 ◽  
Vol 87 (7-8) ◽  
pp. 451-458
Author(s):  
Oliver Gieseler ◽  
Hubert Roth ◽  
Jürgen Wahrburg

AbstractIn this paper, we present a novel 4 camera stereo system for application as optical tracking component in navigation systems in computer-assisted surgery. This shall replace a common stereo camera system in several applications. The objective is to provide a tracking component consisting of four single industrial cameras. The system can be built up flexibly in the operating room e. g. at the operating room lamp. The concept is characterized by independent, arbitrary camera mounting poses and demands easy on-site calibration procedures of the camera setup. Following a short introduction describing the environment, motivation and advantages of the new camera system, a simulation of the camera setup and arrangement is depicted in Section 2. From this, we gather important information and parameters for the hardware setup, which is described in Section 3. Section 4 includes the calibration of the cameras. Here, we illustrate the background of camera model and applied calibration procedures, a comparison of calibration results obtained with different calibration programs and a new concept for fast and easy extrinsic calibration.


Author(s):  
Roeland Eppenga ◽  
Koert Kuhlmann ◽  
Theo Ruers ◽  
Jasper Nijkamp

Abstract Purpose Surgical navigation systems are generally only applied for targets in rigid areas. For non-rigid areas, real-time tumor tracking can be included to compensate for anatomical changes. The only clinically cleared system using a wireless electromagnetic tracking technique is the Calypso® System (Varian Medical Systems Inc., USA), designed for radiotherapy. It is limited to tracking maximally three wireless 5-degrees-of-freedom (DOF) transponders, all used for tumor tracking. For surgical navigation, a surgical tool has to be tracked as well. In this study, we evaluated whether accurate 6DOF tumor tracking is possible using only two 5DOF transponders, leaving one transponder to track a tool. Methods Two methods were defined to derive 6DOF information out of two 5DOF transponders. The first method uses the vector information of both transponders (TTV), and the second method combines the vector information of one transponder with the distance vector between the transponders (OTV). The accuracy of tracking a rotating object was assessed for each method mimicking clinically relevant and worst-case configurations. Accuracy was compared to using all three transponders to derive 6DOF (Default method). An optical tracking system was used as a reference for accuracy. Results The TTV method performed best and was as accurate as the Default method for almost all transponder configurations (median errors < 0.5°, 95% confidence interval < 3°). Only when the angle between the transponders was less than 2°, the TTV method was inaccurate and the OTV method may be preferred. The accuracy of both methods was independent of the angle of rotation, and only the OTV method was sensitive to the plane of rotation. Conclusion These results indicate that accurate 6DOF tumor tracking is possible using only two 5DOF transponders. This encourages further development of a wireless EM surgical navigation approach using a readily available clinical system.


2018 ◽  
Vol 1 (2) ◽  
pp. 2
Author(s):  
Chiung Chyi Shen

Use of pedicle screws is widespread in spinal surgery for degenerative, traumatic, and oncological diseases. The conventional technique is based on the recognition of anatomic landmarks, preparation and palpation of cortices of the pedicle under control of an intraoperative C-arm (iC-arm) fluoroscopy. With these conventional methods, the median pedicle screw accuracy ranges from 86.7% to 93.8%, even if perforation rates range from 21.1% to 39.8%.The development of novel intraoperative navigational techniques, commonly referred to as image-guided surgery (IGS), provide simultaneous and multiplanar views of spinal anatomy. IGS technology can increase the accuracy of spinal instrumentation procedures and improve patient safety. These systems, such as fluoroscopy-based image guidance ("virtual fluoroscopy") and computed tomography (CT)-based computer-guidance systems, have sensibly minimized risk of pedicle screw misplacement, with overall perforation rates ranging from between 14.3% and 9.3%, respectively."Virtual fluoroscopy" allows simultaneous two-dimensional (2D) guidance in multiple planes, but does not provide any axial images; quality of images is directly dependent on the resolution of the acquired fluoroscopic projections. Furthermore, computer-assisted surgical navigation systems decrease the reliance on intraoperative imaging, thus reducing the use of intraprocedure ionizing radiation. The major limitation of this technique is related to the variation of the position of the patient from the preoperative CT scan, usually obtained before surgery in a supine position, and the operative position (prone). The next technological evolution is the use of an intraoperative CT (iCT) scan, which would allow us to solve the position-dependent changes, granting a higher accuracy in the navigation system. 


2020 ◽  
Vol 2 (Supplement_3) ◽  
pp. ii2-ii3
Author(s):  
Kazuhiko Kurozumi

Abstract Navigation systems are reliable and safe for neurological surgery. Navigation is an attractive and innovative therapeutic option. Recently, endo and exoscopic surgeries have been gradually increasing in neurosurgery. We are currently trialing to use 4K and 8K systems to improve the accuracy and safety of our surgical procedures. Surgeries for deep-seated tumors are challenging because of the difficulty in creating a corridor and observing the interface between lesions and the normal area. In total, 315 patients underwent surgery at Okayama University between 2017 and 2019. Among them, we experienced 92 glioma surgeries using navigation systems. Preoperatively, we performed computed tomography imaging and contrast-enhanced magnetic resonance imaging (MRI) for the neuronavigation system. We experienced Curve(TM) Image Guided Surgery (BrainLab, Munich, Germany). The surgical trajectory was planned with functional MRI and diffusion tensor imaging to protect the eloquent area and critical vasculature of the brain. We used a clear plastic tubular retractor system, the ViewSite Brain Access System, for surgery of deep seated gliomas. We gently inserted and placed the ViewSite using the neuronavigation. The tumor was observed and resected through the ViewSite tubular retractor under a microscope and endoscope. If the tumor was large, we switched the ViewSite tubular retractor to brain spatulas to identify the boundary between the normal brain and lesion. We are currently using the combination of the tubular retractor and brain spatulas using navigation system. Here, we present and analyze our preoperative simulation, surgical procedure, and outcomes.


2021 ◽  
pp. 5-17
Author(s):  
O.K. Mikhaylova ◽  
I.V. Korogodin

Problem statement. With the development of satellite navigation systems, new navigation BOC signals are being introduced. Since the structure of BOC signals differs from traditional BPSK signals, this complicates their processing, which may require hardware changes and often leads to the need to develop new ones. Objective. Synthesis and analysis of the BOC signal processing algorithm using two BPSK correlators, comparable in accuracy to the direct method. Results. The synthesis and analysis of the BOC signal delay tracking system using two correlators, originally designed to receive only BPSK-conducting signals, are carried out. The statistical characteristics of the delay discriminator are obtained. It is shown how the accuracy and sensitivity of the obtained delay tracking algorithm are correlated with respect to the reference algorithm, which assumes the use of a signal with a digital subcarrier in the reference signal of the correlator. The pull-in characteristic are obtained. Practical relevance. The processing algorithm BOC signals that doesn't require modification of the traditional correlators of the navigation receiver is presented. This algorithm is of great practical importance, since it allows for high-precision reception of modern BOC and AltBOC signals, despite the limitations characteristic of modern navigation equipment. For example, this algorithm allows to receive Galileo E5 signals using the popular NTLab NT1065 chip. A new signal pull-in algorithm is proposed. This algorithm allows to avoid abnormal tracking errors caused by the operation of the tracking system in the side zones of the s-curve. The pull-in characteristics for various receive conditions are given.


2019 ◽  
Vol 33 (6) ◽  
pp. 691-699 ◽  
Author(s):  
Benjamin J. Talks ◽  
Karan Jolly ◽  
Hanna Burton ◽  
Hitesh Koria ◽  
Shahzada K. Ahmed

Background Cone-beam computed tomography (CBCT) is a fast imaging technique with a substantially lower radiation dosage than conventional multidetector computed tomography (MDCT) for sinus imaging. Surgical navigation systems are increasingly being used in endoscopic sinus and skull base surgery, reducing perioperative morbidity. Objective To investigate CBCT as a low-radiation imaging modality for use in surgical navigation. Methods The required field of view was measured from the tip of the nose to the posterior clinoid process anteroposteriorly and the nasolabial angle to the roof of the frontal sinus superoinferiorly on 50 consecutive MDCT scans (male = 25; age = 17–85 years). A phantom head was manufactured by 3-dimensional printing and imaged using 3 CBCT scanners (Carestream, J Morita, and NewTom), a conventional MDCT scanner (Siemens), and highly accurate laser scanner (FARO). The phantom head was registered to 3 surgical navigation systems (Brainlab, Stryker, and Medtronic) using scans from each system. Results The required field of view (mean ± standard deviation) was measured as 107 ± 7.6 mm anteroposteriorly and 90.3 ± 9.6 mm superoinferiorly. Image error deviations from the laser scan (median ± interquartile range) were comparable for MDCT (0.19 ± 0.09 mm) and CBCT (CBCT 1: 0.15 ± 0.11 mm; CBCT 2: 0.33 ± 0.18 mm; and CBCT 3: 0.13 ± 0.13 mm) scanners. Fiducial registration error and target registration error were also comparable for MDCT- and CBCT-based navigation. Conclusion CBCT is a low-radiation preoperative imaging modality suitable for use in surgical navigation.


Sign in / Sign up

Export Citation Format

Share Document