scholarly journals Simultaneous SAXS/SANS Method at D22 of ILL: Instrument Upgrade

2021 ◽  
Vol 11 (13) ◽  
pp. 5925
Author(s):  
Ezzeldin Metwalli ◽  
Klaus Götz ◽  
Tobias Zech ◽  
Christian Bär ◽  
Isabel Schuldes ◽  
...  

A customized portable SAXS instrument has recently been constructed, installed, and tested at the D22 SANS instrument at ILL. Technical characteristics of this newly established plug-and-play SAXS system have recently been reported (J. Appl. Cryst. 2020, 53, 722). An optimized lead shielding arrangement on the SAXS system and a double energy threshold X-ray detector have been further implemented to substantially suppress the unavoidable high-energy gamma radiation background on the X-ray detector. The performance of the upgraded SAXS instrument has been examined systematically by determining background suppression factors (SFs) at various experimental conditions, including different neutron beam collimation lengths and X-ray sample-to-detector distances (SDDX-ray). Improved signal-to-noise ratio SAXS data enables combined SAXS and SANS measurements for all possible experimental conditions at the D22 instrument. Both SAXS and SANS data from the same sample volume can be fitted simultaneously using a common structural model, allowing unambiguous interpretation of the scattering data. Importantly, advanced in situ/real time investigations are possible, where both the SAXS and the SANS data can reveal time-resolved complementary nanoscale structural information.

2018 ◽  
Author(s):  
Gaetan Dias-Mirandela ◽  
Giulia Tamburrino ◽  
Miloš T Ivanović ◽  
Felix M Strnad ◽  
Olwyn Byron ◽  
...  

In-solution small angle X-ray and neutron scattering (SAXS/SANS) have become popular methods to characterize the structure of membrane proteins, solubilized by either detergents or nanodiscs. SANS studies of protein-detergent complexes usually require deuterium-labelled proteins or detergents, which in turn often lead to problems in their expression or purification. Here, we report an approach whose novelty is the combined analysis of SAXS and SANS data from an unlabeled membrane protein complex in solution in two complementary ways. Firstly, an explicit atomic analysis, including both protein and detergent molecules, using the program WAXSiS which has been adapted to predict SANS data. Secondly, the use of MONSA which allows to discriminate between detergent head- and tail-groups in an ab initio approach. Our approach is readily applicable to any detergent-solubilized protein and provides more detailed structural information on protein-detergent complexes from unlabeled samples than SAXS or SANS alone.


2020 ◽  
Vol 38 (4A) ◽  
pp. 491-500
Author(s):  
Abeer F. Al-Attar ◽  
Saad B. H. Farid ◽  
Fadhil A. Hashim

In this work, Yttria (Y2O3) was successfully doped into tetragonal 3mol% yttria stabilized Zirconia (3YSZ) by high energy-mechanical milling to synthesize 8mol% yttria stabilized Zirconia (8YSZ) used as an electrolyte for high temperature solid oxide fuel cells (HT-SOFC). This work aims to evaluate the densification and ionic conductivity of the sintered electrolytes at 1650°C. The bulk density was measured according to ASTM C373-17. The powder morphology and the microstructure of the sintered electrolytes were analyzed via Field Emission Scanning Electron Microscopy (FESEM). The chemical analysis was obtained with Energy-dispersive X-ray spectroscopy (EDS). Also, X-ray diffraction (XRD) was used to obtain structural information of the starting materials and the sintered electrolytes. The ionic conductivity was obtained through electrochemical impedance spectroscopy (EIS) in the air as a function of temperatures at a frequency range of 100(mHz)-100(kHz). It is found that the 3YSZ has a higher density than the 8YSZ. The impedance analysis showed that the ionic conductivity of the prepared 8YSZ at 800°C is0.906 (S.cm) and it was 0.214(S.cm) of the 3YSZ. Besides, 8YSZ has a lower activation energy 0.774(eV) than that of the 3YSZ 0.901(eV). Thus, the prepared 8YSZ can be nominated as an electrolyte for the HT-SOFC.


Author(s):  
Eaton E. Lattman ◽  
Thomas D. Grant ◽  
Edward H. Snell

Direct electron density determination from SAXS data opens up new opportunities. The ability to model density at high resolution and the implicit direct estimation of solvent terms such as the hydration shell may enable high-resolution wide angle scattering data to be used to calculate density when combined with additional structural information. Other diffraction methods that do not measure three-dimensional intensities, such as fiber diffraction, may also be able to take advantage of iterative structure factor retrieval. While the ability to reconstruct electron density ab initio is a major breakthrough in the field of solution scattering, the potential of the technique has yet to be fully uncovered. Additional structural information from techniques such as crystallography, NMR, and electron microscopy and density modification procedures can now be integrated to perform advanced modeling of the electron density function at high resolution, pushing the boundaries of solution scattering further than ever before.


1997 ◽  
Vol 30 (1) ◽  
pp. 16-20 ◽  
Author(s):  
A. Gibaud ◽  
D. Harlow ◽  
J. B. Hastings ◽  
J. P. Hill ◽  
D. Chapman

The technique of high-energy monochromatic Laue X-ray scattering using image plates to record the diffraction patterns is presented. A tunable wiggler beamline is used as an X-ray source. It is shown that such experimental conditions present many advantages over conventional tube sources and photographic films. A study of diffuse scattering in the perovskite compound KMnF3 is presented to illustrate this in a qualitative way.


Author(s):  
S. Kohara ◽  
◽  
N. Umesaki ◽  
H. Ohno ◽  
K. Suzuya ◽  
...  

The use of high‑energy x‑ray diffraction techniques with the latest generation synchrotron sources has created new approaches to study quantitatively the structure of noncrystalline materials. Recently, this technique has been combined with neutron diffraction at pulsed source to provide more detailed and reliable structural information not previously available. This article reviews and summarises recent results obtained from the high energy x‑ray diffraction on several oxide glasses, SiO2, B2O3 and PbSiO3, using bending magnet beamlines at SPring‑8. In particular, it addresses the structural models of the oxide glasses obtained by the reverse Monte Carlo (RMC) modelling technique using both the high energy x‑ray and neutron diffraction data.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Alisson C Cardoso ◽  
Ana H Pereira ◽  
Andre L Ambrosio ◽  
Silvio R Consonni ◽  
Sandra M Dias ◽  
...  

Members of MEF2 (Myocyte Enhancer Factor 2) family of transcription factors are major regulators of cardiac development and homeostasis. Their functions are regulated at several levels, including the association with a variety of protein partners. We have previously shown that FAK (Focal Adhesion Kinase) regulates the stretch-induced activation of MEF2 in cardiomyocytes. But, the molecular mechanisms, involved in this process, are unclear. Here, we integrated biochemical, imaging and structural analyses to characterize a novel interaction between MEF2 and FAK. An association between MEF2 and FAK was detected by co-immunoprecipitation in the extracts of stretched cardiomyocytes (10%, 60Hz, 2 hours). MEF2 and FAK staining were co-localized in the nuclei of stretched cells. Pull down assays indicated that the Focal Adhesion Targeting (FAT) domain is sufficient to confer FAK interaction with MEF2. Gene reporter assays indicated that the interaction with FAK enhances the MEF2C transcriptional activity in cultured cardiomyocytes. Also, we present a 2.9-Å X-ray crystal structure for the FAK_FAT domain bound to MEF2C (1-95), comprised by the MADS box/MEF2 domain. The structural information, when used in combination with biochemical studies, small-angle X-ray scattering (SAXS) data and reporter gene assay, lead to a mechanistic model describing how FAK binds to MEF2C and stimulates its transcription function in cardiomyocytes. We further validated this model by showing that the binding of FAK to MEF2C is essential for the hypertrophy of cardiomyocyte in response to mechanical stress. Our results present FAK as a new positive regulator of MEF2, implicated in the fine control of the signal transduction between focal adhesions and the nucleus of cardiac myocytes during mechanical stress.


2014 ◽  
Vol 70 (a1) ◽  
pp. C860-C860
Author(s):  
Hyunjeong Kim

Numerous energy materials with improved properties often show nano- or heavily disordered structural features which are hardly characterized by the conventional crystallographic technique alone. By using the atomic pair distribution function (PDF) analysis [1]on X-ray and neutron total scattering data, we have investigated various energy materials to elucidate structural features closely linked to their properties. Some of the examples are heavily disordered V1-xTixH2 for hydrogen storage [2] and layered Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium ion batteries. These materials possess an intricate structure and could easily lead to misleading results if one relies on only one structure probing technique. In this talk, I will show how their structural information was extracted from the x-ray and neutron PDFs obtained at BL22XU at SPring-8 and NOVA at J-PARC, respectively and how it was used with information available from other techniques to understand the properties of these energy materials.


2014 ◽  
Vol 1655 ◽  
Author(s):  
Daniel M. Chevrier ◽  
Amares Chatt ◽  
Peng Zhang ◽  
Chenjie Zeng ◽  
Rongchao Jin

ABSTRACTThiolate-gold nanoclusters exhibit unique optical, magnetic and chiral properties, which are attractive for novel applications in nanotechnology. A fundamental challenge facing these nanomaterials is being able to study and understand their physical properties in various experimental conditions. To overcome this, extended X-ray absorption fine structure (EXAFS) spectroscopy can be employed to probe the Au local structure of thiolate-gold nanoclusters in a variety of conditions, providing valuable structural information from multiple bonding environments (i.e. metal-metal and metal-ligand interactions). This study discusses a methodology for conducting a multishell EXAFS fitting analysis that can be implemented for thiolate-gold nanocluster systems. Specifically, experimental and simulated EXAFS data for Au36(SR)24 nanoclusters are examined with a total of 5 scattering paths fitted to the experimental data.


2015 ◽  
Vol 30 (S1) ◽  
pp. S65-S69 ◽  
Author(s):  
Giorgia Confalonieri ◽  
Monica Dapiaggi ◽  
Marco Sommariva ◽  
Milen Gateshki ◽  
Andy N. Fitch ◽  
...  

Total scattering data of nanocrystalline gahnite (ZnAl2O4, 2–3 nm) have been collected with three of the most commonly used instruments: (i) ID31 high-resolution diffractometer at the European Synchrotron Radiation Facility (ESRF) (Qmax = 22 Å−1); (ii) ID11 high-energy beamline at the ESRF (Qmax = 26.6 Å−1); and (iii) Empyrean laboratory diffractometer by PANalytical with molybdenum anode X-ray tube (Qmax = 17.1 Å−1). Pair distribution functions (PDFs) for each instrument data-set have been obtained, changing some of the parameters, by PDFgetX3 software, with the aim of testing the software in the treatment of different total scattering data. The material under analysis has been chosen for its nanometric (and possibly disordered) nature, to give rise to a challenge for all the diffractometers involved. None of the latter should have a clear advantage. The PDF and F(Q) functions have been visually compared, and then the three PDF sets have been used for refinements by means of PDFgui suite. All the refinements have been made exactly in the same way for the sake of a fair comparison. Small differences could be observed in the experimental PDFs and the derived results, but none of them seemed to be significant.


2016 ◽  
Vol 49 (5) ◽  
pp. 1412-1419 ◽  
Author(s):  
Christopher D. Putnam

The Guinier region in small-angle X-ray scattering (SAXS) defines the radius of gyration,Rg, and the forward scattering intensity,I(0). In Guinier peak analysis (GPA), the plot ofqI(q)versus q2transforms the Guinier region into a characteristic peak for visual and automated inspection of data. Deviations of the peak position from the theoretical position in dimensionless GPA plots can suggest parameter errors, problematic low-resolution data, some kinds of intermolecular interactions or elongated scatters. To facilitate automated analysis by GPA, the elongation ratio (ER), which is the ratio of the areas in the pair-distribution functionP(r) after and before theP(r) maximum, was characterized; symmetric samples have ER values around 1, and samples with ER values greater than 5 tend to be outliers in GPA analysis. Use of GPA+ER can be a helpful addition to SAXS data analysis pipelines.


Sign in / Sign up

Export Citation Format

Share Document