scholarly journals Efficient Management of Power Losses from Renewable Sources Using Removable E.V. Batteries

2021 ◽  
Vol 11 (14) ◽  
pp. 6413
Author(s):  
Claudiu George Bocean ◽  
Anca Antoaneta Vărzaru ◽  
Andreea Teodora Al-Floarei ◽  
Simona Dumitriu ◽  
Dragoş Laurenţiu Diaconescu ◽  
...  

Electric vehicles (E.V.) are one of the feasible solutions to address the challenges of sustainable development that require particular attention, such as climate change, depletion of fossil fuel reserves, and greenhouse gas emissions. In addition to the environmental benefits of electric vehicles, they can also be used as a storage system to alleviate the challenges posed by the variability of renewable electricity sources and to provide the network with ancillary benefits, such as voltage regulation and frequency regulation. Furthermore, using removable batteries by electric vehicles to store renewable energy is an innovative and effective solution to combat the increase in GHG emissions. In this article, using the autoregressive integrated moving average forecast model, we estimate the necessary storage capacity to contribute to the adjustment of the energy system increasingly powered by renewable energy sources. Also, we estimate the number of electric vehicles needed to take over the excess energy produced by renewable sources when the conventional grid cannot take over this surplus. The forecasts have the year 2050 as a time horizon. The results show that removable E.V. batteries can be an efficient solution for managing and storing energy lost in the temporal incongruity of demand with supply in the energy market.

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4541
Author(s):  
Asaad Mohammad ◽  
Ramon Zamora ◽  
Tek Tjing Lie

Electric vehicles (EVs) are one of a prominent solution for the sustainability issues needing dire attention like global warming, depleting fossil fuel reserves, and greenhouse gas (GHG) emissions. Conversely, EVs are shown to emit higher emissions (measured from source to tailpipe) for the fossil fuel-based countries, which necessitates renewable energy sources (RES) for maximizing EV benefits. EVs can also act as a storage system, to mitigate the challenges associated with RES and to provide the grid with ancillary services, such as voltage regulation, frequency regulation, spinning reserve, etc. For extracting maximum benefits from EVs and minimizing the associated impact on the distribution network, modelling optimal integration of EVs in the network is required. This paper focuses on reviewing the state-of-the-art literature on the modelling of grid-connected EV-PV (photovoltaics) system. Further, the paper evaluates the uncertainty modelling methods associated with various parameters related to the grid-connected EV-PV system. Finally, the review is concluded with a summary of potential research directions in this area. The paper presents an evaluation of different modelling components of grid-connected EV-PV system to facilitate readers in modelling such system for researching EV-PV integration in the distribution network.


2020 ◽  
Author(s):  
Markus Millinger ◽  
Philip Tafarte ◽  
Matthias Jordan ◽  
Alena Hahn ◽  
Kathleen Meisel ◽  
...  

<p>The increase of variable renewable energy sources (VRE), i.e. wind and solar power, may lead to a certain mismatch between power demand and supply. At the same time, in order to decarbonise the heat and transport sectors, power-based solutions are often seen as promising option, through so-called sector coupling. At times when VRE power supply exceeds demand, the surplus power could be used for producing liquid and gaseous electrofuels. The power is used for electrolysis, producing hydrogen, which can in turn be used either directly or combined with a carbon source to produce hydrocarbon fuels.</p><p>Here, we analyse the potential development of surplus power for the case of Germany, at an ambitious VRE expansion until 2050 and perform a cost analysis of electrofuels at different production levels using sorted residual load curves. These are then compared to biofuels and electric vehicles with the aid of an optimisation model, considering both cost- and greenhouse gas (GHG)-optimal options for the main transport sectors in Germany.</p><p>We find that, although hydrocarbon electrofuels are more expensive than their main renewable competitors, i.e. biofuels, they are most likely indispensable in addition for reaching climate targets in transport. However, the electrofuel potential is constrained by the availability of both surplus power and carbon. In fact, the surplus power potential is projected to remain limited even at currently ambitious VRE targets for Germany and carbon availability is lower in an increasingly renewable energy system unless direct air capture is deployed. In addition, as the power mix is likely to contain fossil fuels for decades to come, electrofuels based on power directly from the mix with associated conversion losses would cause higher GHG-emissions than the fossil transport fuel reference until a very high share of renewables in the power source is achieved. In contrast, electric vehicles are a more climate competitive option under the projected power mix with remaining fossil fuel fractions, due to a superior fuel economy and thereby lower costs and emissions.</p><p>As part of the assessment, we quantify the greenhouse gas abatement costs for different well-to-wheel pathways and provide an analysis and recommendations for a transition to sustainable transport.</p>


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7525
Author(s):  
Mariusz Niekurzak

The aim of the manuscript was to present the collective results of research on the profitability of using various renewable sources in Poland with the greatest development potential. In the paper, the economic parameters of various investment projects were determined and calculated, i.e., Net Capital Value (NPV), Internal Rate of Return (IRR) and the Period of Return on Invested Capital (PBT). The economic assessment of the use of RES technologies was supplemented with the assessment of environmental benefits. The ecological criterion adopted in the study was the assessment of the potential and costs of reducing greenhouse gas emissions as a result of replacing fossil fuels with renewable energy technologies. On the basis of the constructed economic model to assess the profitability of investments, it has been shown that the analyzed projects will start to bring, depending on their type and technical specification, measurable economic benefits in the form of a reduction in the amount of energy purchased on an annual basis and environmental benefits in the form of reduction of carbon dioxide emissions to the atmosphere. Moreover, the calculations show a high potential for the use of certain renewable sources in Poland, which contributes to the fulfillment of energy and emission obligations towards the EU. The analyzes and research of the Polish energy market with the use of the presented models have shown that the project is fully economically justified and will allow investors to make a rational decision on the appropriate selection of a specific renewable energy source for their investment. The presented economic models to assess the profitability of investments in renewable energy sources can be successfully used in other countries and can also be a starting point for a discussion about the direction of energy development. Due to the lack of collective, original and up-to-date research on the domestic market, the manuscript provides the reader with the necessary knowledge regarding the legitimacy of using renewable energy sources, investment and environmental profitability.


Energy ◽  
2019 ◽  
Vol 186 ◽  
pp. 115841 ◽  
Author(s):  
Mustafa Ata ◽  
Ayşe Kübra Erenoğlu ◽  
İbrahim Şengör ◽  
Ozan Erdinç ◽  
Akın Taşcıkaraoğlu ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-18
Author(s):  
Yan Zhang ◽  
Jie Meng ◽  
Bo Guo ◽  
Tao Zhang

As more and more renewable energy sources (RES) integrated into the conventional distribution system, how to make the current electric grid more reliable and efficient is becoming an important topic the world must face. In order to achieve these goals, grid-connected hybrid energy systems (HES) which contain battery energy storage systems (BESS) and many other advanced technologies have been developed and applied. Many benefits of BESS, such as high density of energy and power, have fast response in energy time-shift, frequency regulation, and so on. This paper focuses on the fluctuation alleviation and power quality improvement of grid-connected HES with high penetration level of RES. A multistage dispatch strategy of BESS for HES is proposed in this paper to mitigate the randomness and intermittence of the power flowed in HES because of high penetration level of RES integration. Four other conventional strategies are also discussed for evaluating the performance of the method proposed in this paper. Detailed cases and corresponding discussions are implemented, and the results show that the method proposed in this paper is more effective and robust than the other conventional strategies.


2012 ◽  
Vol 588-589 ◽  
pp. 1640-1643
Author(s):  
Shu Lei Deng ◽  
Bao Ping Liu ◽  
An Jun Li ◽  
Xiong Zhou ◽  
Yu Xiang Huang

High renewable energy penetration in power systems may bring a series of problems such as frequency fluctuations. Plug-in electric vehicles (PEVs) and controllable loads have been shifting into focus for this. A dynamic vehicle-to-grid (V2G) model with feedback control is proposed by considering the battery charging/discharging characteristics and the dynamic model of frequency regulation with PEVs and controllable loads for a single area is established. Simulation results demonstrate that the application of PEVs and controllable loads can relief the frequency refutation due to the randomness of renewable energy sources.


Author(s):  
Damilola Elizabeth Babatunde ◽  
Olubayo Moses Babatunde ◽  
Micheal Uzoamaka Emezirinwune ◽  
Iheanacho Henry Denwigwe ◽  
Taiwo Emmanuel Okharedia ◽  
...  

Renewable energy plays a very important role in the improvement and promotion of environmental sustainability in agricultural-related activities. This paper evaluates the techno-economic and environmental benefits of deploying photovoltaic (PV)- battery systems in a livestock farmhouse. For the energy requirements of the farm to be determined, a walkthrough energy audit is conducted on the farmhouse. The farm selected for this study is located in southern Nigeria. The National Renewable Energy Laboratory’s Hybrid Optimization Modeling for Electric Renewable (HOMER) software was adapted for the purpose of the techno-economic analysis. It is found that a standalone PV/battery-powered system in farmhouse applications has higher economic viability when compared to its diesel-powered counterparts in terms of total net present cost (TNPC). A saving of 48% is achievable over the TNPC and Cost of Energy with zero emissions. The results obtained show the numerous benefits of replacing diesel generators with renewable energy sources such as PV-battery systems in farming applications.


Author(s):  
Peter Hrabovský

The article focuses on technologies that are closely linked to the use of renewable energy sources. We are living at a time when the emphasis is on increasing the share of production and use of heat and electricity generated by technologies using the sun, wind, water and earth. By transforming energy from sources like the Sun and the Earth, we use solar, photovoltaic collectors, heat pumps and circulation systems. Energy production in these ways is limited, therefore the research and development of individual systems is pushing the possibilities of using renewable energy sources forward. The main objective of obtaining energy from renewable sources is to cover the energy performance of buildings and people’s requirements to ensure optimal thermal comfort with maximum use of energy from renewable sources. When designing the required technologies, it is necessary to emphasize the choice of construction material for individual parts of the energy system. If we want to extract energy from the earth it is necessary to design a material suitable for aggressive soil environment – the Earth’s shell. The negative impact of soil chemical and physical properties affects not only the material structure of a part of the technology, but also the overall efficiency of the energy system.


2019 ◽  
Vol 112 ◽  
pp. 02003
Author(s):  
Otilia Nedelcu ◽  
Ioan Corneliu Salisteanu ◽  
Traian Ivanovici ◽  
Valentin Dogaru

The renewable energy sources are becoming more and more current in the energy supply of buildings, from residential buildings to institutional buildings. The renewable energy sources have proved to be a solution and an important element of the Romanian Energy System. We are starting from the idea of using the renewable sources to passivize a building, and we are relying on existing facilities in the Multidisciplinary Scientific and Technological Research Institute (ICSTM) from Valahia University of Targoviste (UVT) to produce the energy from its own sources. We are also considering the consumption data from previous year as well as the electric link to external power grid. This paper aims to propose new renewable energy units so that ICSTM become energetical independent. Currently, the ICSTM building consumes an amount of energy produced from renewable sources about three times less than that consumed from the external network. In order to determine the number of equipment, specifically CPV (concentrating photovoltaic) panels placed on trackers, it is desirable to create a 40% reserve above the installed power, taking in account the possible future development of the research laboratories.


Sign in / Sign up

Export Citation Format

Share Document