scholarly journals Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4541
Author(s):  
Asaad Mohammad ◽  
Ramon Zamora ◽  
Tek Tjing Lie

Electric vehicles (EVs) are one of a prominent solution for the sustainability issues needing dire attention like global warming, depleting fossil fuel reserves, and greenhouse gas (GHG) emissions. Conversely, EVs are shown to emit higher emissions (measured from source to tailpipe) for the fossil fuel-based countries, which necessitates renewable energy sources (RES) for maximizing EV benefits. EVs can also act as a storage system, to mitigate the challenges associated with RES and to provide the grid with ancillary services, such as voltage regulation, frequency regulation, spinning reserve, etc. For extracting maximum benefits from EVs and minimizing the associated impact on the distribution network, modelling optimal integration of EVs in the network is required. This paper focuses on reviewing the state-of-the-art literature on the modelling of grid-connected EV-PV (photovoltaics) system. Further, the paper evaluates the uncertainty modelling methods associated with various parameters related to the grid-connected EV-PV system. Finally, the review is concluded with a summary of potential research directions in this area. The paper presents an evaluation of different modelling components of grid-connected EV-PV system to facilitate readers in modelling such system for researching EV-PV integration in the distribution network.

2021 ◽  
Vol 11 (14) ◽  
pp. 6413
Author(s):  
Claudiu George Bocean ◽  
Anca Antoaneta Vărzaru ◽  
Andreea Teodora Al-Floarei ◽  
Simona Dumitriu ◽  
Dragoş Laurenţiu Diaconescu ◽  
...  

Electric vehicles (E.V.) are one of the feasible solutions to address the challenges of sustainable development that require particular attention, such as climate change, depletion of fossil fuel reserves, and greenhouse gas emissions. In addition to the environmental benefits of electric vehicles, they can also be used as a storage system to alleviate the challenges posed by the variability of renewable electricity sources and to provide the network with ancillary benefits, such as voltage regulation and frequency regulation. Furthermore, using removable batteries by electric vehicles to store renewable energy is an innovative and effective solution to combat the increase in GHG emissions. In this article, using the autoregressive integrated moving average forecast model, we estimate the necessary storage capacity to contribute to the adjustment of the energy system increasingly powered by renewable energy sources. Also, we estimate the number of electric vehicles needed to take over the excess energy produced by renewable sources when the conventional grid cannot take over this surplus. The forecasts have the year 2050 as a time horizon. The results show that removable E.V. batteries can be an efficient solution for managing and storing energy lost in the temporal incongruity of demand with supply in the energy market.


Energetika ◽  
2016 ◽  
Vol 62 (1-2) ◽  
Author(s):  
Hitesh Dutt Mathur ◽  
Yogesh Krishan Bhateshvar

In a smart grid scenario, penetration of large scale renewable energy sources is increasing rapidly. Even at global level, serious discussions are being done to reduce carbon emission. In order to achieve this goal of cleaner and greener environment for newer generations, fossil fuel based vehicles are being replaced with electric vehicles. This concept of having more electric vehicles will not only control pollution level but also supply electrical power back to the grid when have surplus power stored. It is going to be a win-win situation for both consumers and the grid. The concept termed as Vehicle-to-Grid (V2G) is explored for frequency regulation aspect in a multi-generation power network in this paper. When established automatic generation control (AGC) in interconnected power system is not sufficient to manage balance between demand and supply, vehicle energy storage is considered a viable option for a shortterm active power support in order to bring frequency back to normal. In energy storage possibilities, super conducting magnetic energy storage, ultra-capacitor, etc. are primarily discussed. This paper focuses on an integrated model of vehicle-to-grid (V2G) and wind power as alternatives to supply instant power to regulate frequency when the  system is subjected to sudden perturbation. APSO (adaptive particle swarm optimization) optimized fuzzy logic controller is used to intelligently suppress frequency and tie-line power oscillations. Results obtained are comprehensively presented and discussed in achieving power-frequency balance. MATLAB/Simulink is used for the simulation purpose.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1642 ◽  
Author(s):  
Hossam A. Gabbar ◽  
Muhammad R. Abdussami ◽  
Md. Ibrahim Adham

Renewable energy sources (RESs) play an indispensable role in sustainable advancement by reducing greenhouse gas (GHG) emissions. Nevertheless, due to the shortcomings of RESs, an energy mix with RESs is required to support the baseload and to avoid the effects of RES variability. Fossil fuel-based thermal generators (FFTGs), like diesel generators, have been used with RESs to support the baseload. However, using FFTGs with RESs is not a good option to reduce GHG emissions. Hence, the small-scale nuclear power plant (NPPs), such as the micro-modular reactor (MMR), have become a modern alternative to FFTGs. In this paper, the authors have investigated five different hybrid energy systems (HES) with combined heat and power (CHP), named ‘conventional small-scale fossil fuel-based thermal energy system,’ ‘small-scale stand-alone RESs-based energy system,’ ‘conventional small-scale fossil fuel-based thermal and RESs-based HES,’ ‘small-scale stand-alone nuclear energy system,’ and ‘nuclear-renewable micro hybrid energy system (N-R MHES),’ respectively, in terms of net present cost (NPC), cost of energy (COE), and GHG emissions. A sensitivity analysis was also conducted to identify the impact of the different variables on the systems. The results reveal that the N-R MHES could be the most suitable scheme for decarbonization and sustainable energy solutions.


2020 ◽  
pp. 395-413
Author(s):  
Adrian Tantau ◽  
Robert Staiger

New business models in the solar PV business were pushed from government policies worldwide for reducing GHG emissions. Therefore, PV system installments increase exorbitant in the last years with the consequences of constant falling of prices for PV system and energy. All these quickly changed conditions, means new flexible BM. Power purchase agreements, Product Service Systems, demand resource provider, energy performance contracts are evolving rapidly in the renewable energy business. There is a variation of new PV BM for use. PV represent a new energy source for producing H2 as a storable renewable fuel in an overcapacity situation. Using H2 in combination with other systems, like hybrid systems, heat pumps gives new unique business opportunities. Decentralization will be the key to success. Other applications like mobility and long term storage are other further alternatives in connections or combination with the volatile renewable energy sources.


2016 ◽  
Vol 693 ◽  
pp. 45-52
Author(s):  
L.H. Liu

Fossil energy is increasing depletion, renewable energy sources plays an important role in our life and Vehicle-to-Grid (V2G) is proved to be feasible. Electric Vehicles (EVs) can not only store energy, but also can be used as a medium between the battery energy stored in EVs and the power grid through Vehicle-to-Grid (V2G). And then, the energy in the batteries of electric vehicles can move with EVs. This paper introduces an energy distribution network, which is consisting of EVs, charge stations and renewable energy sources. After analyzing the characteristics of energy distribution network, we introduce a new commercial operation mode called mobile electrical grid, which is compared with the integrated grids. To calculate the life cycle energy loss for this novel operation mode, a mathematical model is developed, and then what we have deduced is demonstrated to be a lasso optimization problem with linear constraints, which is convex.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 720 ◽  
Author(s):  
Neofytos Neofytou ◽  
Konstantinos Blazakis ◽  
Yiannis Katsigiannis ◽  
Georgios Stavrakakis

The rapid development of technology used in electric vehicles, and in particular their penetration in electricity networks, is a major challenge for the area of electric power systems. The utilization of battery capacity of the interconnected vehicles can bring significant benefits to the network via the Vehicle to Grid (V2G) operation. The V2G operation is a process that can provide primary frequency regulation services in the electric network by exploiting the total capacity of a fleet of electric vehicles. In this paper, the impact of the plug-in hybrid electric vehicles (PHEVs) in the primary frequency regulation is studied and the effects PHEVs cause in non-interconnected isolated power systems with significant renewable energy sources (RES) penetration. Also it is taken into consideration the requirements of users for charging their vehicles. The V2G operation can be performed either with fluctuations in charging power of vehicles, or by charging or discharging the battery. So an electric vehicle user can participate in V2G operation either during the loading of the vehicle to the charging station, or by connecting the vehicle in the charging station without any further demands to charge its battery. In this paper, the response of PHEVs with respect to the frequency fluctuations of the network is modeled and simulated. Additionally, by using the PowerWorld Simulator software, simulations of the isolated power system of Cyprus Island, including the current RES penetration are performed in order to demonstrate the effectiveness of V2G operation in its primary frequency regulation.


Author(s):  
Ali Ramzanzadeh Badeleh

Plug-in hybrid electric vehicles (PHEVs) are being used in today’s smart grid with high penetration. In addition to their main transportation duty, they can be used as a reliable source of energy for the grid at the time of high demand and save money for their owners. Because PHEVs are able to quickly respond to systems need, they can be used for applications such as reserve and frequency regulations. This paper presents a cost optimization study on the effect of PHEVs presence in the reserve and frequency regulations in power grids.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012117
Author(s):  
Raghunath Niharika ◽  
K M Sai Pavan ◽  
P V Manitha

Abstract Climate change is a growing concern due to greenhouse gas emission and transportation has increased the requirement for various energy sources with limiting and less pollution. But with the establishment of more electric vehicles on the road, charging EV’s will be difficult if the grid is used. When many numbers of electric vehicles are integrated to the grid, it will inevitably have a huge effect on its function and control. Hence, there is a requirement for an effective charging system for electric vehicles using renewable energy sources. Solar energy is renewable and green, but the volatile nature of energy from the Photo-Voltaic (PV) system and dynamic charging requirement of electric vehicles has added new problems to the effective charging of EV from these sources. The Solar powered charging station with battery storage system is a better solution for this problem. The power is transferred from the AC grid to the DC link when there is a depletion of power from solar. This paper deals with DC level 1 fast charger to charge an electric vehicle with phase shifted full bridge converter as a main charging topology which is able to deliver the load of 50KW to charge the electric vehicle. To maintain a constant voltage at the output of the boost converter connected to the solar panel, a fuzzy controller is also developed in the proposed system


2020 ◽  
Author(s):  
Markus Millinger ◽  
Philip Tafarte ◽  
Matthias Jordan ◽  
Alena Hahn ◽  
Kathleen Meisel ◽  
...  

<p>The increase of variable renewable energy sources (VRE), i.e. wind and solar power, may lead to a certain mismatch between power demand and supply. At the same time, in order to decarbonise the heat and transport sectors, power-based solutions are often seen as promising option, through so-called sector coupling. At times when VRE power supply exceeds demand, the surplus power could be used for producing liquid and gaseous electrofuels. The power is used for electrolysis, producing hydrogen, which can in turn be used either directly or combined with a carbon source to produce hydrocarbon fuels.</p><p>Here, we analyse the potential development of surplus power for the case of Germany, at an ambitious VRE expansion until 2050 and perform a cost analysis of electrofuels at different production levels using sorted residual load curves. These are then compared to biofuels and electric vehicles with the aid of an optimisation model, considering both cost- and greenhouse gas (GHG)-optimal options for the main transport sectors in Germany.</p><p>We find that, although hydrocarbon electrofuels are more expensive than their main renewable competitors, i.e. biofuels, they are most likely indispensable in addition for reaching climate targets in transport. However, the electrofuel potential is constrained by the availability of both surplus power and carbon. In fact, the surplus power potential is projected to remain limited even at currently ambitious VRE targets for Germany and carbon availability is lower in an increasingly renewable energy system unless direct air capture is deployed. In addition, as the power mix is likely to contain fossil fuels for decades to come, electrofuels based on power directly from the mix with associated conversion losses would cause higher GHG-emissions than the fossil transport fuel reference until a very high share of renewables in the power source is achieved. In contrast, electric vehicles are a more climate competitive option under the projected power mix with remaining fossil fuel fractions, due to a superior fuel economy and thereby lower costs and emissions.</p><p>As part of the assessment, we quantify the greenhouse gas abatement costs for different well-to-wheel pathways and provide an analysis and recommendations for a transition to sustainable transport.</p>


Sign in / Sign up

Export Citation Format

Share Document