scholarly journals Two-Dimensional Full-Waveform Joint Inversion of Surface Waves Using Phases and Z/H Ratios

2021 ◽  
Vol 11 (15) ◽  
pp. 6712
Author(s):  
Chao Zhang ◽  
Ting Lei ◽  
Yi Wang

Surface-wave dispersion and the Z/H ratio are important parameters used to resolve the Earth’s structure, especially for S-wave velocity. Several previous studies have explored using joint inversion of these two datasets. However, all of these studies used a 1-D depth-sensitivity kernel, which lacks precision when the structure is laterally heterogeneous. Adjoint tomography (i.e., full-waveform inversion) is a state-of-the-art imaging method with a high resolution. It can obtain better-resolved lithospheric structures beyond the resolving ability of traditional ray-based travel-time tomography. In this study, we present a systematic investigation of the 2D sensitivities of the surface wave phase and Z/H ratio using the adjoint-state method. The forward-modeling experiments indicated that the 2D phase and Z/H ratio had different sensitivities to the S-wave velocity. Thus, a full-waveform joint-inversion scheme of surface waves with phases and a Z/H ratio was proposed to take advantage of their complementary sensitivities to the Earth’s structure. Both applications to synthetic data sets in large- and small-scale inversions demonstrated the advantage of the joint inversion over the individual inversions, allowing for the creation of a more unified S-wave velocity model. The proposed joint-inversion scheme offers a computationally efficient and inexpensive alternative to imaging fine-scale shallow structures beneath a 2D seismic array.

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. R1-R11 ◽  
Author(s):  
Dmitry Borisov ◽  
Ryan Modrak ◽  
Fuchun Gao ◽  
Jeroen Tromp

Full-waveform inversion (FWI) is a powerful method for estimating the earth’s material properties. We demonstrate that surface-wave-driven FWI is well-suited to recovering near-surface structures and effective at providing S-wave speed starting models for use in conventional body-wave FWI. Using a synthetic example based on the SEG Advanced Modeling phase II foothills model, we started with an envelope-based objective function to invert for shallow large-scale heterogeneities. Then we used a waveform-difference objective function to obtain a higher-resolution model. To accurately model surface waves in the presence of complex tomography, we used a spectral-element wave-propagation solver. Envelope misfit functions are found to be effective at minimizing cycle-skipping issues in surface-wave inversions, and surface waves themselves are found to be useful for constraining complex near-surface features.


1962 ◽  
Vol 52 (2) ◽  
pp. 359-388
Author(s):  
Eysteinn Tryggvason

ABSTRACT A number of Icelandic records of earthquakes originating in the Mid-Atlantic Seismic Belt between 52° and 70° N. lat. have been investigated. The surface waves on these records are chiefly in the period interval 3–10 sec, and are first mode Love-waves and Rayleigh-waves. The surface wave dispersion can be explained by a three-layered crustal structure as follows. A surface layer of S-wave velocity about 2.7 km/sec covering the whole region studied, a second layer of S-wave velocity about 3.6 km/sec covering Iceland and extending several hundred kilometers off the coasts and a third layer of S-wave velocity about 4.3 km/sec and P-wave velocity about 7.4 km/sec underlying the whole region. The thickness of the surface layer appears to be about 4 km on the Mid-Atlantic Ridge south of Iceland and in western Iceland, 3 km in central Iceland and 7 km northwest of Iceland. The second layer is apparently of similar thickness than the surface layer, while the third layer is thick; and the surface wave dispersion does not indicate any layer of higher wave velocity. This 7.4-layer is supposed to belong to the mantle, although its wave velocity is significantly lower than usually found in the upper mantle


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. EN99-EN108 ◽  
Author(s):  
Zongbo Xu ◽  
T. Dylan Mikesell ◽  
Jianghai Xia ◽  
Feng Cheng

Passive-source seismic-noise-based surface-wave methods are now routinely used to investigate the near-surface geology in urban environments. These methods estimate the S-wave velocity of the near surface, and two methods that use linear recording arrays are seismic interferometry (SI) and refraction microtremor (ReMi). These two methods process noise data differently and thus can yield different estimates of the surface-wave dispersion, the data used to estimate the S-wave velocity. We have systematically compared these two methods using synthetic data with different noise source distributions. We arrange sensors in a linear survey grid, which is conveniently used in urban investigations (e.g., along roads). We find that both methods fail to correctly determine the low-frequency dispersion characteristics when outline noise sources become stronger than inline noise sources. We also identify an artifact in the ReMi method and theoretically explain the origin of this artifact. We determine that SI combined with array-based analysis of surface waves is the more accurate method to estimate surface-wave phase velocities because SI separates surface waves propagating in different directions. Finally, we find a solution to eliminate the ReMi artifact that involves the combination of SI and the [Formula: see text]-[Formula: see text] transform, the array processing method that underlies the ReMi method.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCC105-WCC118 ◽  
Author(s):  
Romain Brossier ◽  
Stéphane Operto ◽  
Jean Virieux

Quantitative imaging of the elastic properties of the subsurface at depth is essential for civil engineering applications and oil- and gas-reservoir characterization. A realistic synthetic example provides for an assessment of the potential and limits of 2D elastic full-waveform inversion (FWI) of wide-aperture seismic data for recovering high-resolution P- and S-wave velocity models of complex onshore structures. FWI of land data is challenging because of the increased nonlinearity introduced by free-surface effects such as the propagation of surface waves in the heterogeneous near-surface. Moreover, the short wavelengths of the shear wavefield require an accurate S-wave velocity starting model if low frequencies are unavailable in the data. We evaluated different multiscale strategies with the aim of mitigating the nonlinearities. Massively parallel full-waveform inversion was implemented in the frequency domain. The numerical optimization relies on a limited-memory quasi-Newton algorithm thatoutperforms the more classic preconditioned conjugate-gradient algorithm. The forward problem is based upon a discontinuous Galerkin (DG) method on triangular mesh, which allows accurate modeling of free-surface effects. Sequential inversions of increasing frequencies define the most natural level of hierarchy in multiscale imaging. In the case of land data involving surface waves, the regularization introduced by hierarchical frequency inversions is not enough for adequate convergence of the inversion. A second level of hierarchy implemented with complex-valued frequencies is necessary and provides convergence of the inversion toward acceptable P- and S-wave velocity models. Among the possible strategies for sampling frequencies in the inversion, successive inversions of slightly overlapping frequency groups is the most reliable when compared to the more standard sequential inversion of single frequencies. This suggests that simultaneous inversion of multiple frequencies is critical when considering complex wave phenomena.


2019 ◽  
Vol 109 (5) ◽  
pp. 1922-1934 ◽  
Author(s):  
Liam D. Toney ◽  
Robert E. Abbott ◽  
Leiph A. Preston ◽  
David G. Tang ◽  
Tori Finlay ◽  
...  

Abstract In preparation for the next phase of the Source Physics Experiments, we acquired an active‐source seismic dataset along two transects totaling more than 30 km in length at Yucca Flat, Nevada, on the Nevada National Security Site. Yucca Flat is a sedimentary basin which has hosted more than 650 underground nuclear tests (UGTs). The survey source was a novel 13,000 kg modified industrial pile driver. This weight drop source proved to be broadband and repeatable, richer in low frequencies (1–3 Hz) than traditional vibrator sources and capable of producing peak particle velocities similar to those produced by a 50 kg explosive charge. In this study, we performed a joint inversion of P‐wave refraction travel times and Rayleigh‐wave phase‐velocity dispersion curves for the P‐ and S‐wave velocity structure of Yucca Flat. Phase‐velocity surface‐wave dispersion measurements were obtained via the refraction microtremor method on 1 km arrays, with 80% overlap. Our P‐wave velocity models verify and expand the current understanding of Yucca Flat’s subsurface geometry and bulk properties such as depth to Paleozoic basement and shallow alluvium velocity. Areas of disagreement between this study and the current geologic model of Yucca Flat (derived from borehole studies) generally correlate with areas of widely spaced borehole control points. This provides an opportunity to update the existing model, which is used for modeling groundwater flow and radionuclide transport. Scattering caused by UGT‐related high‐contrast velocity anomalies substantially reduced the number and frequency bandwidth of usable dispersion picks. The S‐wave velocity models presented in this study agree with existing basin‐wide studies of Yucca Flat, but are compromised by diminished surface‐wave coherence as a product of this scattering. As nuclear nonproliferation monitoring moves from teleseismic to regional or even local distances, such high‐frequency (>5  Hz) scattering could prove challenging when attempting to discriminate events in areas of previous testing.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. R147-R161 ◽  
Author(s):  
Zhaolun Liu ◽  
Jing Li ◽  
Sherif M. Hanafy ◽  
Kai Lu ◽  
Gerard Schuster

Irregular topography can cause strong scattering and defocusing of propagating surface waves, so it is important to account for such effects when inverting surface waves for shallow S-wave velocity structures. We have developed a 3D surface-wave dispersion inversion method that takes into account the topographic effects modeled by a 3D spectral element solver. The objective function is the frequency summation of the squared wavenumber differences [Formula: see text] along each azimuthal angle of the fundamental mode or higher-order modes of Rayleigh waves in each shot gather. The wavenumbers [Formula: see text] associated with the dispersion curves are calculated using the data recorded along the irregular free surface. Numerical tests on synthetic and field data demonstrate that 3D topographic wave equation dispersion inversion (TWD) can accurately invert for the S-wave velocity model from surface-wave data recorded on irregular topography. Field data tests for data recorded across an Arizona fault demonstrate that, for this example, the 2D TWD model can be as accurate as the 3D tomographic model. This suggests that in some cases, the 2D TWD inversion is preferred over 3D TWD because of its significant reduction in computational costs. Compared to the 3D P-wave velocity tomogram, the 3D S-wave tomogram agrees much more closely with the geologic model taken from the trench log. The agreement with the trench log is even better when the [Formula: see text] tomogram is computed, which reveals a sharp change in velocity across the fault. The localized velocity anomaly in the [Formula: see text] tomogram is in very good agreement with the well log. Our results suggest that integrating the [Formula: see text] and [Formula: see text] tomograms can sometimes give the most accurate estimates of the subsurface geology across normal faults.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B95-B105 ◽  
Author(s):  
Yao Wang ◽  
Richard D. Miller ◽  
Shelby L. Peterie ◽  
Steven D. Sloan ◽  
Mark L. Moran ◽  
...  

We have applied time domain 2D full-waveform inversion (FWI) to detect a known 10 m deep wood-framed tunnel at Yuma Proving Ground, Arizona. The acquired seismic data consist of a series of 2D survey lines that are perpendicular to the long axis of the tunnel. With the use of an initial model estimated from surface wave methods, a void-detection-oriented FWI workflow was applied. A straightforward [Formula: see text] quotient masking method was used to reduce the inversion artifacts and improve confidence in identifying anomalies that possess a high [Formula: see text] ratio. Using near-surface FWI, [Formula: see text] and [Formula: see text] velocity profiles were obtained with void anomalies that are easily interpreted. The inverted velocity profiles depict the tunnel as a low-velocity anomaly at the correct location and depth. A comparison of the observed and simulated waveforms demonstrates the reliability of inverted models. Because the known tunnel has a uniform shape and for our purposes an infinite length, we apply 1D interpolation to the inverted [Formula: see text] profiles to generate a pseudo 3D (2.5D) volume. Based on this research, we conclude the following: (1) FWI is effective in near-surface tunnel detection when high resolution is necessary. (2) Surface-wave methods can provide accurate initial S-wave velocity [Formula: see text] models for near-surface 2D FWI.


2017 ◽  
Author(s):  
Valentina Socco ◽  
Farbod Khosro Anjom ◽  
Cesare Comina ◽  
Daniela Teodor

Sign in / Sign up

Export Citation Format

Share Document