scholarly journals Sensitivity Analysis of Anchored Slopes under Water Level Fluctuations: A Case Study of Cangjiang Bridge—Yingpan Slope in China

2021 ◽  
Vol 11 (15) ◽  
pp. 7137
Author(s):  
Jinxi Liang ◽  
Wanghua Sui

This paper presents an improved slope stability sensitivity analysis (ISSSA) model that takes anchoring factors into consideration in umbrella-anchored sand and clay slopes under reservoir water level fluctuation. The results of the ISSSA model show that the slope inclination and the layout density of anchors are the main controlling factors for sand slope stability under fluctuation of the water level, while the slope inclination and water head height are the main controlling factors for slope stability in the Cangjiang bridge—Yingpan slope of Yunnan province in China. Moreover, there is an optimum anchorage angle, in the range of 25–45 degrees, which has the greatest influence on slope stability. The fluctuation of the reservoir water level is an important factor that triggers slope instability; in particular, a sudden drop in the surface water level can easily lead to landslides; therefore, corresponding measures should be implemented in a timely manner in order to mitigate landslide disasters.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingxiang Meng ◽  
Kun Qian ◽  
Lin Zhong ◽  
Jinjian Gu ◽  
Yue Li ◽  
...  

Large-scale slopes at the banks of reservoirs pose a serious threat to the safety of hydropower stations. The fluctuation of the reservoir water level is a key factor in the slope stability. However, the parameters to describe the relationship among water content, matric suction, and soil strength are difficult to measure using unsaturated soil strength theory. To solve this problem, a simple FEM-LEM-combined scheme considering pore pressure, seepage force, and strength weakening is presented to calculate the safety factor. A numerical study on the impact of reservoir water level fluctuations on stability of a glaciofluvial deposit slope is implemented. Two typical profiles are used to estimate the stability of the glaciofluvial deposit slope in response to rising and lowering water levels. The results indicate that this method proposed a simple and efficient tool for water level-induced slope stability analysis.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Bing Han ◽  
Bin Tong ◽  
Jinkai Yan ◽  
Chunrong Yin ◽  
Liang Chen ◽  
...  

Reservoir landslide is a type of commonly seen geological hazards in reservoir area and could potentially cause significant risk to the routine operation of reservoir and hydropower station. It has been accepted that reservoir landslides are mainly induced by periodic variations of reservoir water level during the impoundment and drawdown process. In this study, to better understand the deformation characters and controlling factors of the reservoir landslide, a multiparameter-based monitoring program was conducted on a reservoir landslide—the Hongyanzi landslide located in Pubugou reservoir area in the southwest of China. The results indicated that significant deformation occurred to the landslide during the drawdown period; otherwise, the landslide remained stable. The major reason of reservoir landslide deformation is the generation of seepage water pressure caused by the rapidly growing water level difference inside and outside of the slope. The influences of precipitation and earthquake on the slope deformation of the Hongyanzi landslide were insignificant.


Water ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 450 ◽  
Author(s):  
Faming Huang ◽  
Xiaoyan Luo ◽  
Weiping Liu

It is significant to study the variations in the stability coefficients of hydrodynamic pressure landslides with different permeability coefficients affected by reservoir water level fluctuations and rainstorms. The Sifangbei landslide in Three Gorges Reservoir area is used as case study. Its stability coefficients are simulated based on saturated-unsaturated seepage theory and finite element analysis. The operating conditions of stability coefficients calculation are reservoir water level variations between 175 m and 145 m, different rates of reservoir water level fluctuations, and a three-day continuous rainstorm. Results show that the stability coefficient of the hydrodynamic pressure landslide decreases with the drawdown of the reservoir water level, and a rapid drawdown rate leads to a small stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. Additionally, the landslide stability coefficient increases as the reservoir water level increases, and a rapid increase in the water level leads to a high stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. The landslide stability coefficient initially decreases and then increases as the reservoir water level declines when the permeability coefficient is greater than 4.64 × 10−5 m/s. Moreover, for structures with the same landslide, the landslide stability coefficient is most sensitive to the change in the rate of reservoir water level drawdown when the permeability coefficient increases from 1.16 × 10−6 m/s to 1.16 × 10−4 m/s. Additionally, the rate of decrease in the stability coefficient increases as the permeability coefficient increases. Finally, the three-day rainstorm leads to a significant reduction in landslide stability, and the rate of decrease in the stability coefficient initially increases and then decreases as the permeability coefficient increases.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Javed Iqbal ◽  
Xinbin Tu ◽  
Wei Gao

Filling of Xiangjiaba Reservoir Lake in the Southwest China triggered and reactivated numerous landslides due to water fluctuation. In order to understand the relationship between reservoirs and slope instability, a typical reservoir landslide (Dasha landslide) at the right bank of Jinsha River was selected as a case study for in-depth investigations. The detailed field investigations were carried out to identify the landslide with respect to its surroundings and to find out the slip surface. Boreholes were drilled to find out the subsurface lithology and the depth of failure of Dasha landslide. The in situ geotechnical tests were performed, and the soil samples from exposed slip surface were retrieved for geotechnical laboratory analysis. Finally, stability analysis was done using the 3D strength reduction method under different conditions of reservoir water level fluctuations and rainfall conditions. The in-depth investigations show that the Dasha landslide is a bedding rockslide which was once activated in 1986. The topography of Dasha landslide is relatively flat, while the back scarp and local terrain is relatively steep. The total volume of landslides is about 580×104 m3 with an average thickness of 20 m. Bedrock in the landslide area is composed of Suining Formation of the Jurassic age. The main rock type is silty mudstone with sandstone, and the bedding orientation is 300~310° ∠ 7~22°. The factor of safety (FOS) of Dasha landslide obtained by 3D strength reduction cannot meet the minimum safety requirement under the working condition of reservoir level fluctuation as designed, with effect of rainfall and rapid drawdown.


2021 ◽  
Vol 276 ◽  
pp. 01028
Author(s):  
Zhou YiLiang ◽  
Li Ming ◽  
Li ZiLong

The reservoir water level fluctuation is an important factor inducing the reaction of pore-water pressure, seepage and at last resulting in instability and failure of the slope. A typical homogeneous slope is conducted as an example in this paper, the seepage and stress coupling effect is considered, and the slope stability calculation and analysis are carried out by using the finite element stress method. The results demonstrate that the factor of safety increases with the reservoir water level rises, and then gradually changes from decrease to stabilization. It should be noted that the factor of safety decreases slightly during the initial stage of water level rising at the speed of 0.2 m/d, which the slope will probably lose its stability. On the other, the factor of safety changes from decrease to increase along with the reservoir water level drawdown, and then gradually tends to stabilization. There is a minimum factor of safety when the water level is at about 1/4 of the slope height, and the minimum factor of safety decreases with increasing drawdown speed, just as the factor of safety decreases from 0.83 to 0.73 when the drawdown speed is increased from 0.20 m/d to 5.0 m/d.


Sign in / Sign up

Export Citation Format

Share Document