scholarly journals Theories and Analysis of Functionally Graded Beams

2021 ◽  
Vol 11 (15) ◽  
pp. 7159
Author(s):  
Junuthula N. Reddy ◽  
Eugenio Ruocco ◽  
Jose A. Loya ◽  
Ana M. A. Neves

This is a review paper containing the governing equations and analytical solutions of the classical and shear deformation theories of functionally graded straight beams. The classical, first-order, and third-order shear deformation theories account for through-thickness variation of two-constituent functionally graded material, modified couple stress (i.e., strain gradient), and the von Kármán nonlinearity. Analytical solutions for bending of the linear theories, some of which are not readily available in the literature, are included to show the influence of the material variation, boundary conditions, and loads.

2014 ◽  
Vol 11 (06) ◽  
pp. 1350098 ◽  
Author(s):  
ABDERRAHMANE SAID ◽  
MOHAMMED AMEUR ◽  
ABDELMOUMEN ANIS BOUSAHLA ◽  
ABDELOUAHED TOUNSI

An improved simple hyperbolic shear deformation theory involving only four unknown functions, as against five functions in case of first or other higher-order shear deformation theories, is introduced for the analysis of functionally graded plates resting on a Winkler–Pasternak elastic foundation. The governing equations are derived by employing the principle of virtual work and the physical neutral surface concept. The accuracy of the present analysis is demonstrated by comparing some of the present results with those of the classical, the first-order and the other higher-order theories.


2017 ◽  
Vol 21 (3) ◽  
pp. 938-972 ◽  
Author(s):  
Dao Van Dung ◽  
Nguyen Thi Nga ◽  
Pham Minh Vuong

This paper investigates analytically nonlinear buckling and postbuckling of functionally graded sandwich circular thick cylindrical shells filled inside by Pasternak two-parameter elastic foundations under thermal loads and axial compression loads. Shells are reinforced by closely spaced functionally graded material (FGM) rings and stringers. The temperature field is taken into account. Two general Sigmoid law and general power law, with four models of stiffened FGM sandwich cylindrical shell, are proposed. Using the Reddy’s third-order shear deformation shell theory (TSDT), stress function, and Lekhnitsky’s smeared stiffeners technique, the governing equations are derived. The closed form to determine critical axial load and postbuckling load-deflection curves are obtained by the Galerkin method. The effects of the face sheet thickness to total thickness ratio, stiffener, foundation, material, and dimensional parameters on critical thermal loads, critical mechanical loads and postbuckling behavior of shells are analyzed. In addition, this paper shows that for thin shells we can use the classical shell theory to investigate stability behavior of shell, but for thicker shells the use of TSDT for analyzing nonlinear stability of shell is necessary and suitable.


2020 ◽  
pp. 107754632095166
Author(s):  
Chih-Chiang Hong

The effects of third-order shear deformation theory and varied shear correction coefficient on the vibration frequency of thick functionally graded material cylindrical shells with fully homogeneous equation under thermal environment are investigated. The nonlinear coefficient term of displacement field of third-order shear deformation theory is included to derive the fully homogeneous equation under free vibration of functionally graded material cylindrical shells. The determinant of the coefficient matrix in dynamic equilibrium differential equations under free vibration can be represented into the fully fifth-order polynomial equation, thus the natural frequency can be found. Two parametric effects of environment temperature and functionally graded material power law index on the natural frequency of functionally graded material thick cylindrical shells with and without the nonlinear coefficient term of displacement fields are computed and investigated.


2013 ◽  
Vol 705 ◽  
pp. 30-35
Author(s):  
K. Swaminathan ◽  
D.T. Naveenkumar

Analytical formulations and solutions to the static analysis of simply supported Functionally Graded Material (FGM) plates hitherto not reported in the literature based on a higher-order refined shear deformation theory with nine degrees-of-freedom already reported in the literature are presented. This computational model incorporates the plate deformations which account for the effect of transverse shear deformation. The transverse displacement is assumed to be constant throughout the thickness. In addition, another higher order theory with five degrees-of-freedom and the first order theory already reported in the literature are also considered for comparison. The governing equations of equilibrium using all the computational models are derived using the Principle of Minimum Potential Energy (PMPE) and the analytical solutions are obtained in closed-form using Naviers solution technique. A simply supported plate with SS-1 boundary conditions subjected to transverse loading is considered for all the problems under investigation. The varying parameters considered are the side-to-thickness ratio, power law function, edge ratio and the degree of anisotropy. Correctness of the formulation and the solution method is first established and then extensive numerical results using all the models are presented which will serve as a bench mark for future investigations.


2015 ◽  
Vol 37 (3) ◽  
pp. 187-204
Author(s):  
Dao Van Dung ◽  
Nguyen Thi Nga

In this paper, the buckling and post-buckling behaviors of eccentrically  stiffened functionally graded material (ES-FGM) plates on elastic  foundations subjected to in-plane compressive loads or thermal loads are  investigated by an analytical solution. The novelty of this work is that FGM  plates are reinforced by FGM stiffeners and the temperature, stiffener,  foundation are considered. The first-order shear deformation  plate theory is used. The thermal elements of plate and stiffeners in  fundamental equations are introduced. Theoretical formulations based on the  smeared stiffeners technique and the first-order shear deformation plate  theory, are derived. The analytical expressions to determine the static  critical buckling load and post-buckling load-deflection curves are  obtained.


2006 ◽  
Vol 74 (3) ◽  
pp. 523-533 ◽  
Author(s):  
R. P. Shimpi ◽  
H. G. Patel ◽  
H. Arya

First-order shear deformation theories, one proposed by Reissner and another one by Mindlin, are widely in use, even today, because of their simplicity. In this paper, two new displacement based first-order shear deformation theories involving only two unknown functions, as against three functions in case of Reissner’s and Mindlin’s theories, are introduced. For static problems, governing equations of one of the proposed theories are uncoupled. And for dynamic problems, governing equations of one of the theories are only inertially coupled, whereas those of the other theory are only elastically coupled. Both the theories are variationally consistent. The effectiveness of the theories is brought out through illustrative examples. One of the theories has striking similarity with classical plate theory.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Woo-Young Jung ◽  
Sung-Cheon Han

Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM) nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution) of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM) nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear deformation theory. The equations of motion of the nonlocal theories are derived using Hamilton’s principle. The nonlocal elasticity of Eringen has the ability to capture the small scale effect. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory on bending and vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are investigated. Results of the present theory show a good agreement with the reference solutions. These results can be used for evaluating the reliability of size-dependent S-FGM nanoscale plate models developed in the future.


2014 ◽  
Vol 11 (06) ◽  
pp. 1350080 ◽  
Author(s):  
R. G. BI ◽  
X. HAN ◽  
C. JIANG ◽  
Y. C. BAI ◽  
J. LIU

The uncertain buckling and reliability of the laminated piezoelectric functionally graded material (FGM) cylindrical shells subjected to axially compressed loads are investigated in this research. Considering the shear deformation, the buckling governing equations of the piezoelectric FGM cylindrical shells are derived on the basis of Donnell assumptions. And then the nonprobabilistic convex model is introduced to predict the uncertain buckling loads of the piezoelectric FGM cylindrical shells resulting from the unavoidable scatter in structural parameters. Finally, the reliability degree of the structures is obtained by computing the ratio of the multidimensional volume falling into the reliability domain to the one of the whole convex model. Numerical results indicate that uncertainties in structural parameters have significant effects on the critical buckling loads and reliability of the piezoelectric FGM cylindrical shells.


Sign in / Sign up

Export Citation Format

Share Document