scholarly journals Fast Pre-Diagnosis of Neoplastic Changes in Cytology Images Using Machine Learning

2021 ◽  
Vol 11 (16) ◽  
pp. 7181
Author(s):  
Jakub Caputa ◽  
Daria Łukasik ◽  
Maciej Wielgosz ◽  
Michał Karwatowski ◽  
Rafał Frączek ◽  
...  

We present the experiment results to use the YOLOv3 neural network architecture to automatically detect tumor cells in cytological samples taken from the skin in canines. A rich dataset of 1219 smeared sample images with 28,149 objects was gathered and annotated by the vet doctor to perform the experiments. It covers three types of common round cell neoplasms: mastocytoma, histiocytoma, and lymphoma. The dataset has been thoroughly described in the paper and is publicly available. The YOLOv3 neural network architecture was trained using various schemes involving original dataset modification and the different model parameters. The experiments showed that the prototype model achieved 0.7416 mAP, which outperforms the state-of-the-art machine learning and human estimated results. We also provided a series of analyses that may facilitate ML-based solutions by casting more light on some aspects of its performance. We also presented the main discrepancies between ML-based and human-based diagnoses. This outline may help depict the scenarios and how the automated tools may support the diagnosis process.

IoT ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 222-235
Author(s):  
Guillaume Coiffier ◽  
Ghouthi Boukli Hacene ◽  
Vincent Gripon

Deep Neural Networks are state-of-the-art in a large number of challenges in machine learning. However, to reach the best performance they require a huge pool of parameters. Indeed, typical deep convolutional architectures present an increasing number of feature maps as we go deeper in the network, whereas spatial resolution of inputs is decreased through downsampling operations. This means that most of the parameters lay in the final layers, while a large portion of the computations are performed by a small fraction of the total parameters in the first layers. In an effort to use every parameter of a network at its maximum, we propose a new convolutional neural network architecture, called ThriftyNet. In ThriftyNet, only one convolutional layer is defined and used recursively, leading to a maximal parameter factorization. In complement, normalization, non-linearities, downsamplings and shortcut ensure sufficient expressivity of the model. ThriftyNet achieves competitive performance on a tiny parameters budget, exceeding 91% accuracy on CIFAR-10 with less than 40 k parameters in total, 74.3% on CIFAR-100 with less than 600 k parameters, and 67.1% On ImageNet ILSVRC 2012 with no more than 4.15 M parameters. However, the proposed method typically requires more computations than existing counterparts.


Author(s):  
Yanlin Han ◽  
Piotr Gmytrasiewicz

This paper introduces the IPOMDP-net, a neural network architecture for multi-agent planning under partial observability. It embeds an interactive partially observable Markov decision process (I-POMDP) model and a QMDP planning algorithm that solves the model in a neural network architecture. The IPOMDP-net is fully differentiable and allows for end-to-end training. In the learning phase, we train an IPOMDP-net on various fixed and randomly generated environments in a reinforcement learning setting, assuming observable reinforcements and unknown (randomly initialized) model functions. In the planning phase, we test the trained network on new, unseen variants of the environments under the planning setting, using the trained model to plan without reinforcements. Empirical results show that our model-based IPOMDP-net outperforms the other state-of-the-art modelfree network and generalizes better to larger, unseen environments. Our approach provides a general neural computing architecture for multi-agent planning using I-POMDPs. It suggests that, in a multi-agent setting, having a model of other agents benefits our decision-making, resulting in a policy of higher quality and better generalizability.


2021 ◽  
Author(s):  
◽  
Martin Mundt

Deep learning with neural networks seems to have largely replaced traditional design of computer vision systems. Automated methods to learn a plethora of parameters are now used in favor of previously practiced selection of explicit mathematical operators for a specific task. The entailed promise is that practitioners no longer need to take care of every individual step, but rather focus on gathering big amounts of data for neural network training. As a consequence, both a shift in mindset towards a focus on big datasets, as well as a wave of conceivable applications based exclusively on deep learning can be observed. This PhD dissertation aims to uncover some of the only implicitly mentioned or overlooked deep learning aspects, highlight unmentioned assumptions, and finally introduce methods to address respective immediate weaknesses. In the author’s humble opinion, these prevalent shortcomings can be tied to the fact that the involved steps in the machine learning workflow are frequently decoupled. Success is predominantly measured based on accuracy measures designed for evaluation with static benchmark test sets. Individual machine learning workflow components are assessed in isolation with respect to available data, choice of neural network architecture, and a particular learning algorithm, rather than viewing the machine learning system as a whole in context of a particular application. Correspondingly, in this dissertation, three key challenges have been identified: 1. Choice and flexibility of a neural network architecture. 2. Identification and rejection of unseen unknown data to avoid false predictions. 3. Continual learning without forgetting of already learned information. These latter challenges have already been crucial topics in older literature, alas, seem to require a renaissance in modern deep learning literature. Initially, it may appear that they pose independent research questions, however, the thesis posits that the aspects are intertwined and require a joint perspective in machine learning based systems. In summary, the essential question is thus how to pick a suitable neural network architecture for a specific task, how to recognize which data inputs belong to this context, which ones originate from potential other tasks, and ultimately how to continuously include such identified novel data in neural network training over time without overwriting existing knowledge. Thus, the central emphasis of this dissertation is to build on top of existing deep learning strengths, yet also acknowledge mentioned weaknesses, in an effort to establish a deeper understanding of interdependencies and synergies towards the development of unified solution mechanisms. For this purpose, the main portion of the thesis is in cumulative form. The respective publications can be grouped according to the three challenges outlined above. Correspondingly, chapter 1 is focused on choice and extendability of neural network architectures, analyzed in context of popular image classification tasks. An algorithm to automatically determine neural network layer width is introduced and is first contrasted with static architectures found in the literature. The importance of neural architecture design is then further showcased on a real-world application of defect detection in concrete bridges. Chapter 2 is comprised of the complementary ensuing questions of how to identify unknown concepts and subsequently incorporate them into continual learning. A joint central mechanism to distinguish unseen concepts from what is known in classification tasks, while enabling consecutive training without forgetting or revisiting older classes, is proposed. Once more, the role of the chosen neural network architecture is quantitatively reassessed. Finally, chapter 3 culminates in an overarching view, where developed parts are connected. Here, an extensive survey further serves the purpose to embed the gained insights in the broader literature landscape and emphasizes the importance of a common frame of thought. The ultimately presented approach thus reflects the overall thesis’ contribution to advance neural network based machine learning towards a unified solution that ties together choice of neural architecture with the ability to learn continually and the capability to automatically separate known from unknown data.


2021 ◽  
Author(s):  
Alexei Belochitski ◽  
Vladimir Krasnopolsky

Abstract. The ability of Machine-Learning (ML) based model components to generalize to the previously unseen inputs, and the resulting stability of the models that use these components, has been receiving a lot of recent attention, especially when it comes to ML-based parameterizations. At the same time, ML-based emulators of existing parameterizations can be stable, accurate, and fast when used in the model they were specifically designed for. In this work we show that shallow-neural-network-based emulators of radiative transfer parameterizations developed almost a decade ago for a state-of-the-art GCM are robust with respect to the substantial structural and parametric change in the host model: when used in two seven month-long experiments with the new model, they not only remain stable, but generate realistic output. Aspects of neural network architecture and training set design potentially contributing to stability of ML-based model components are discussed.


The applications of a content-based image retrieval system in fields such as multimedia, security, medicine, and entertainment, have been implemented on a huge real-time database by using a convolutional neural network architecture. In general, thus far, content-based image retrieval systems have been implemented with machine learning algorithms. A machine learning algorithm is applicable to a limited database because of the few feature extraction hidden layers between the input and the output layers. The proposed convolutional neural network architecture was successfully implemented using 128 convolutional layers, pooling layers, rectifier linear unit (ReLu), and fully connected layers. A convolutional neural network architecture yields better results of its ability to extract features from an image. The Euclidean distance metric is used for calculating the similarity between the query image and the database images. It is implemented using the COREL database. The proposed system is successfully evaluated using precision, recall, and F-score. The performance of the proposed method is evaluated using the precision and recall.


2019 ◽  
Author(s):  
Jacob Witten ◽  
Zack Witten

AbstractAntimicrobial peptides (AMPs) are naturally occurring or synthetic peptides that show promise for treating antibiotic-resistant pathogens. Machine learning techniques are increasingly used to identify naturally occurring AMPs, but there is a dearth of purely computational methods to design novel effective AMPs, which would speed AMP development. We collected a large database, Giant Repository of AMP Activities (GRAMPA), containing AMP sequences and associated MICs. We designed a convolutional neural network to perform combined classification and regression on peptide sequences to quantitatively predict AMP activity against Escherichia coli. Our predictions outperformed the state of the art at AMP classification and were also effective at regression, for which there were no publicly available comparisons. We then used our model to design novel AMPs and experimentally demonstrated activity of these AMPs against the pathogens E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Data, code, and neural network architecture and parameters are available at https://github.com/zswitten/Antimicrobial-Peptides.


Author(s):  
James M Dawson ◽  
Timothy A Davis ◽  
Edward L Gomez ◽  
Justus Schock

Abstract In the upcoming decades large facilities, such as the SKA, will provide resolved observations of the kinematics of millions of galaxies. In order to assist in the timely exploitation of these vast datasets we blackexplore the use of a self-supervised, physics aware neural network capable of Bayesian kinematic modelling of galaxies. We demonstrate the network’s ability to model the kinematics of cold gas in galaxies with an emphasis on recovering physical parameters and accompanying modelling errors. The model is able to recover rotation curves, inclinations and disc scale lengths for both CO and H i data which match well with those found in the literature. The model is also able to provide modelling errors over learned parameters thanks to the application of quasi-Bayesian Monte-Carlo dropout. This work shows the promising use of machine learning, and in particular self-supervised neural networks, in the context of kinematically modelling galaxies. This work represents the first steps in applying such models for kinematic fitting and we propose that variants of our model would seem especially suitable for enabling emission-line science from upcoming surveys with e.g. the SKA, allowing fast exploitation of these large datasets.


2021 ◽  
Vol 2094 (3) ◽  
pp. 032037
Author(s):  
M G Dorrer ◽  
S E Golovenkin ◽  
S Yu Nikulina ◽  
Yu V Orlova ◽  
E Yu Pelipeckaya ◽  
...  

Abstract The article solves the problem of creating models for predicting the course and complications of cardiovascular diseases. Artificial neural networks based on the Keras library are used. The original dataset includes 1700 case histories. In addition, the dataset augmentation procedure was used. As a result, the overall accuracy exceeded 84%. Furthermore, optimizing the network architecture and dataset has increased the overall accuracy by 17% and precision by 7%.


Sign in / Sign up

Export Citation Format

Share Document