scholarly journals A Unified Approach for the Control of Power Electronics Converters. Part II: Tracking

2021 ◽  
Vol 11 (16) ◽  
pp. 7618
Author(s):  
Germain Garcia ◽  
Oswaldo Lopez-Santos ◽  
Luis Martinez-Salamero

This paper extends the results recently proposed in Part I of this research work focused on the stabilization of power electronic converters. This second part is devoted to cases in which the underlying control problems can be translated into tracking control problems. This is the case for DC-AC converters whose output must track a sinusoidal reference signal. The idea is to tackle the problem in a unified manner in order to avoid as much as possible the use of approximations and to exploit all the mathematical properties of the corresponding switched models. The case in which measurable or non-measurable perturbations are present is considered. The proposed techniques are illustrated for two particular DC-AC converters simulated using the PSIM software.

2021 ◽  
Vol 11 (2) ◽  
pp. 631
Author(s):  
Germain Garcia ◽  
Oswaldo Lopez Santos

This work deals with the control of power electronics converters. In that context, the majority of the problems of interest can be translated into two main problems: stabilization control problems and tracking control problems. Numerous methods exist in the literature to propose solutions which are based on several ways of handling them in a more appropriate context: linear, nonlinear, switching, and hybrid control, to cite the most important. In recent years, a considerable effort has been made to derive control design methods taking into account the specificities and properties of the complex behavior of these systems, going beyond the numerous techniques based on approximated models or focused on the specific converter topology under study and, in that way, making a step towards a desirable genericity level. It is the objective of this work to go a step further trying to tackle the control of power converters in a unified way. The idea is to avoid, as much as possible, the use of approximations and exploit all the mathematical properties of the associated switched models. Writing them in a specific way, it is possible to deal with a lot of problems of interest whose solutions are based on assumptions which are the expressions of some kind of practical feasibility, and then closely related to the existence of solutions to the studied problems. In some cases, the resulting controls have an inevitable complexity level which reflects one of the problems under study. For such situations, the implementation issues are important and are not discussed in details in this paper. The proposed methods are illustrated by numerical simulations conducted with the help of PSIM software. This research work is decomposed into two parts, the first one focused on stabilization problems is developed in this paper. The other one concerning the tracking problems will be developed in a future paper.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6522
Author(s):  
Victor Manuel Hernández-Guzmán ◽  
Ramón Silva-Ortigoza ◽  
Salvador Tavera-Mosqueda ◽  
Mariana Marcelino-Aranda ◽  
Magdalena Marciano-Melchor

This paper is concerned with path-tracking control of a wheeled mobile robot. This robot is equipped with two permanent magnet brushed DC-motors which are fed by two inverter-DC/DC Buck power converter systems as power amplifiers. By taking into account the dynamics of all the subsystems we present, for the first time, a formal stability proof for this control problem. Our control scheme is simple, in the sense that it is composed by four internal classical proportional-integral loops and one external classical proportional-derivative loop for path-tracking purposes. This is the third paper of a series of papers devoted to control different nonlinear systems, which proves that the proposed methodology is a rather general approach for controlling electromechanical systems when actuated by power electronic converters.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3490
Author(s):  
Vitor Fernão Pires ◽  
Armando José Pires ◽  
Armando Cordeiro ◽  
Daniel Foito

The use of power electronic converters is essential for the operation of Switched Reluctance Machines (SRMs). Many topologies and structures have been developed over the last years considering several specific applications for this kind of machine, improving the control strategies, performance range, fault-tolerant operation, among other aspects. Thus, due to the great importance of power electronic converters in such applications, this paper is focused on a detailed review of main structures and topologies for SRM drives. The proposed study is not limited to the classic two-level power converters topologies dedicated to the SRMs; it also presents a review about recent approaches, such as multilevel topologies and based on impedance source network. Moreover, this review is also focused on a new class of topologies associated to these machines, namely the ones with fault-tolerant capability. This new category of topologies has been a topic of research in recent years, being currently considered an area of great interest for future research work. An analysis, taking into consideration the main features of each structure and topology, was addressed in this review. A classification and comparison of the several structures and topologies for each kind of converter, considering modularity, boost capability, number of necessary switches and phases, integration in the machine design, control complexity, available voltage levels and fault-tolerant capability to different failure modes, is also presented. In this way, this review also includes a description of the presented solutions taking into consideration the reliability of the SRM drive.


2021 ◽  
Author(s):  
Husan Ali

To control the power flow among various energy sources and loads of a power system of modern more electric aircrafts, power electronics converters are employed. The integration of multiple sources into distribution system and their interconnection with variety of loads through power electronic converters results in a complex dynamic system. Modeling of these systems prior to implementation becomes necessary to analyze and predict system’s behavior. The classical modeling approaches require detail knowledge about the topology and parameters of the active and passive components of the power electronics converters. While in modern system, most of the power electronics converters are ready to use power electronics modules. These modules come from different manufacturers, lacking the necessary information to build the conventional switch or average models. The chapter would cover dynamic behavioral modeling technique for power electronics systems to be employed in more electric aircrafts, which do not require any prior information about the internal details of the system.


2021 ◽  
Author(s):  
Wenlong Ming

Power electronic converters are indispensable building blocks of microgrids. They are the enabling technology for many applications of microgrids, e.g., renewable energy integration, transportation electrification, energy storage, and power supplies for computing. In this chapter, the requirements, functions, and operation of power electronic converters are introduced. Then, different topologies of the converters used in microgrids are discussed, including DC/DC converters, single-phase DC/AC converters, three-phase three-wire, and four-wire DC/AC converters. The remaining parts of this chapter focus on how to optimally design and control these converters with the emerging wide-bandgap semiconductors. Correlated tradeoffs of converter efficiency, power density, and cost are analyzed using Artificial Neural Networks to find the optimal design of the converters.


The operational principle of a classical converter of AC into AC energy is described in Section 1 Chapter 3. It includes an explanation of the basic idea on which the operation of the further down studied power electronic converters is based. The basic indicators of a power electronic converter supplied by an AC power have been studied in Chapter 4. The conclusions made in it according the ways of the increase of the power factor KP are also valid in AC/AC converters. The purpose is to consume current with a waveform as close as possible to a sine wave (with low contents of harmonics) and whose first harmonic to be in phase with the source voltage.


Sign in / Sign up

Export Citation Format

Share Document