scholarly journals Anti-Genotoxicity Evaluation of Ellagic Acid and Curcumin—An In Vitro Study on Zebrafish Blood Cells

2021 ◽  
Vol 11 (17) ◽  
pp. 8142
Author(s):  
Filomena Mottola ◽  
Renata Finelli ◽  
Concetta Iovine ◽  
Maria Carannante ◽  
Marianna Santonastaso ◽  
...  

Genotoxicity is the ability of specific substances to cause DNA damage, affecting development, physiology, and reproduction. This is often mediated by induction of oxidative stress. This in vitro study aims to test the ability of two antioxidants, ellagic acid (EA, 100 µM) and curcumin (Cur, 40 µM) to protect zebrafish blood cells from the genotoxic action of benzene (10 µL/mL). Cells were treated for 30, 60, and 90 min with EA or Cur alone and in combination with benzene. The antigenotoxic role of antioxidants was evaluated in terms of cytotoxicity by trypan blue dye, genome stability by RAPD-PCR technique, DNA fragmentation and percentage of apoptotic cells using Comet and Diffusion assay, respectively. The results did not show statistical differences in terms of cell viability, genome stability, DNA damage and apoptosis between cells treated with antioxidants. When zebrafish blood cells were co-incubated with individual antioxidants and benzene, a significant improvement of these parameters was observed in comparison with cells incubated in benzene. Our results suggested that EA and Cur are able to protect zebrafish blood cells against DNA damage and apoptosis caused by mutagenic substance, and laid the foundation for future studies investigating their antigenotoxic potential in DNA oxidative damage therapy.

2021 ◽  
Vol 165 ◽  
pp. 39
Author(s):  
Francesca Lombardi ◽  
Silvano Santini ◽  
Paola Palumbo ◽  
Valeria Cordone ◽  
Virginio Bignotti ◽  
...  

Author(s):  
Sarah McCarrick ◽  
Valentin Romanovski ◽  
Zheng Wei ◽  
Elin M. Westin ◽  
Kjell-Arne Persson ◽  
...  

AbstractWelders are daily exposed to various levels of welding fumes containing several metals. This exposure can lead to an increased risk for different health effects which serves as a driving force to develop new methods that generate less toxic fumes. The aim of this study was to explore the role of released metals for welding particle-induced toxicity and to test the hypothesis that a reduction of Cr(VI) in welding fumes results in less toxicity by comparing the welding fume particles of optimized Cr(VI)-reduced flux-cored wires (FCWs) to standard FCWs. The welding particles were thoroughly characterized, and toxicity (cell viability, DNA damage and inflammation) was assessed following exposure to welding particles as well as their released metal fraction using cultured human bronchial epithelial cells (HBEC-3kt, 5–100 µg/mL) and human monocyte-derived macrophages (THP-1, 10–50 µg/mL). The results showed that all Cr was released as Cr(VI) for welding particles generated using standard FCWs whereas only minor levels (< 3% of total Cr) were released from the newly developed FCWs. Furthermore, the new FCWs were considerably less cytotoxic and did not cause any DNA damage in the doses tested. For the standard FCWs, the Cr(VI) released in cell media seemed to explain a large part of the cytotoxicity and DNA damage. In contrast, all particles caused rather similar inflammatory effects suggesting different underlying mechanisms. Taken together, this study suggests a potential benefit of substituting standard FCWs with Cr(VI)-reduced wires to achieve less toxic welding fumes and thus reduced risks for welders.


2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi250-vi250
Author(s):  
Anurag N Paranjape ◽  
Brunilde Gril ◽  
Stephan Woditschka ◽  
Jeffrey Hanson ◽  
Xiaolin Wu ◽  
...  

2016 ◽  
Vol 35 (14) ◽  
pp. 3176-3181
Author(s):  
Elham Sadat Mostafavi ◽  
Mohammad Ali Nasiri Khalili ◽  
Sirus Khodadadi ◽  
Gholam Hossein Riazi

2019 ◽  
Vol 127 (3) ◽  
pp. 037007 ◽  
Author(s):  
Julie M. Hall ◽  
Heather R. Powell ◽  
Lara Rajic ◽  
Kenneth S. Korach

2018 ◽  
Vol 251 (5-6) ◽  
pp. 735-745 ◽  
Author(s):  
Hanna Pruchnik ◽  
Aleksandra Włoch ◽  
Dorota Bonarska-Kujawa ◽  
Halina Kleszczyńska

Sign in / Sign up

Export Citation Format

Share Document