scholarly journals Dynamic Analysis of a Single-Rotor Wind Turbine with Counter-Rotating Electric Generator under Variable Wind Speed

2021 ◽  
Vol 11 (19) ◽  
pp. 8834
Author(s):  
Mircea Neagoe ◽  
Radu Saulescu ◽  
Codruta Jaliu ◽  
Ion Neagoe

This paper presents a theoretical study of the dynamic behaviour of a wind turbine consisting of a wind rotor, a speed increaser with fixed axes, and a counter-rotating electric generator, operating in variable wind conditions. In the first part, the dynamic analytical model of the wind turbine mechanical system is elaborated based on the dynamic equations associated with the component rigid bodies and the linear mechanical characteristics associated with the direct current (DC) generator and wind rotor. The paper proposes a method for identifying the coefficients of the wind rotor mechanical characteristics depending on the wind speed. The numerical simulations performed in Simulink-MATLAB by MathWorks on a case study of a 10 kW wind turbine highlight the variation with the time of the kinematic parameters (angular speeds and accelerations), torques and powers for wind system shafts, as well as the mechanical efficiency, both in transient and steady-state regimes, considering variable wind speed. The analytical and numerical results are helpful for researchers, designers, developers, and practitioners of wind turbines aiming to optimise their construction and functionality through virtual prototyping.

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Bhavana Valeti ◽  
Shamim N. Pakzad

Rotor blades are the most complex structural components in a wind turbine and are subjected to continuous cyclic loads of wind and self-weight variation. The structural maintenance operations in wind farms are moving towards condition based maintenance (CBM) to avoid premature failures. For this, damage prognosis with remaining useful life (RUL) estimation in wind turbine blades is necessary. Wind speed variation plays an important role influencing the loading and consequently the RUL of the structural components. This study investigates the effect of variable wind speed between the cutin and cut-out speeds of a typical wind farm on the RUL of a damage detected wind turbine blade as opposed to average wind speed assumption. RUL of wind turbine blades are estimated for different initial crack sizes using particle filtering method which forecasts the evolution of fatigue crack addressing the non-linearity and uncertainty in crack propagation. The stresses on a numerically simulated life size onshore wind turbine blade subjected to the above wind speed loading cases are used in computing the crack propagation observation data for particle filters. The effects of variable wind speed on the damage propagation rates and RUL in comparison to those at an average wind speed condition are studied and discussed.


2019 ◽  
Vol 11 (5) ◽  
pp. 1249 ◽  
Author(s):  
Ciprian Sorandaru ◽  
Sorin Musuroi ◽  
Flaviu Frigura-Iliasa ◽  
Doru Vatau ◽  
Marian Dordescu

Due to high mechanical inertia and rapid variations in wind speed over time, at variable wind speeds, the problem of operation in the optimal energetic area becomes complex and in due time it is not always solvable. No work has been found that analyzes the energy-optimal operation of a wind system operating at variable wind speeds over time and that considers the variation of the wind speed over time. In this paper, we take into account the evolution of wind speed over time and its measurement with a low-power turbine, which operates with no load at the mechanical angular velocity ωMAX. The optimal velocity is calculated. The energy that is captured by the wind turbine significantly depends on the mechanical angular velocity. In order to perform a function in the maximum power point (MPP) power point area, the load on the electric generator is changed, and the optimum mechanical velocity is estimated, ωOPTIM, knowing that the ratio ωOPTIM/ωMAX does not depend on the time variation of the wind speed.


2012 ◽  
Vol 229-231 ◽  
pp. 2323-2326
Author(s):  
Zong Qi Tan ◽  
Can Can Li ◽  
Hui Jun Ye ◽  
Yu Qiong Zhou ◽  
Hua Ling Zhu

This paper designed the controller of the wind turbine rotor rotating speed. This model of adaptive-PID through control the tip-speed ratio and count the values of PID for variable wind speed. From the result of simulation, the wind speed can run in a good dynamic characteristic, and keep the rotor running in the best tip-speed ratio at the same time.


Energies ◽  
2016 ◽  
Vol 9 (7) ◽  
pp. 548 ◽  
Author(s):  
Yingning Qiu ◽  
Hongxin Jiang ◽  
Yanhui Feng ◽  
Mengnan Cao ◽  
Yong Zhao ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 7279-7282
Author(s):  
Α. Guediri ◽  
Α. Guediri

In this article, we will study a system consisting of a wind turbine operating at a variable wind speed and a two-feed asynchronous machine (DFIG) connected to the grid by the stator and fed by a transducer at the rotor side. The conductors are separately controlled for active and reactive power flow between the stator (DFIG) and the network, which is achieved using conventional PI and fuzzy logic. The proposed controllers generate reference voltages for the rotor to ensure that the active and reactive powers reach the required reference values, in order to ensure effective tracking of the optimum operating point and to obtain the maximum electrical power output. System modeling and simulation were examined with Matlab. Dynamic analysis of the system is performed under variable wind speed. This analysis is based on active and reactive energy control. The results obtained show the advantages of the proposed intelligent control unit.


Sign in / Sign up

Export Citation Format

Share Document