scholarly journals Experimental Verification and Analytical Approach for Electromagnetic Characteristics of a High-Speed Permanent Magnet Motor with Two Different Rotors and Winding Patterns

2021 ◽  
Vol 11 (19) ◽  
pp. 9060
Author(s):  
Jong-Hyeon Woo ◽  
Tae-Kyoung Bang ◽  
Jeong-In Lee ◽  
Hoon-Ki Lee ◽  
Jang-Young Choi

In general, high-speed machines should be designed with high efficiency electromagnetic and mechanical characteristics. It is important to analyze the electromagnetic loss for a design with high efficiency. In this study, the effects of the magneto–motive force and time harmonics of the stator current according to the winding distribution of a high-speed permanent magnet motor on the electromagnetic characteristics were comparatively analyzed using analytical methods and FEM. In addition, the final model was proposed by analyzing the relationship between the magnet usage according to the rotor shape and the electromagnetic and mechanical properties according to the winding patterns. Finally, the optimal model was manufactured and the validity was experimentally verified.

2021 ◽  
Author(s):  
Natalia Lykova ◽  
Danila Martiushev

Abstract Geothermal energy is one of the more efficient renewable energy sources. It uses heat from the Earth's interior to produce electricity in geothermal power plants. In binary cycle power plants, geothermal water can often be produced naturally from high-pressure wells. But when reservoir pressure drops, these power plants need to add artificial lift to continue to produce needed quantities of hot water. The geothermal industry is looking at electrical submersible pumping (ESP) systems as a way to improve geothermal fluid production. But ESPs were designed for the conditions in oil wells and are subject to severe complicating factors in geothermal conditions that significantly reduce runlife, such as temperatures up to 200°C (390°F), highly corrosive fluid, and salt deposition (scale). At the same time, production rates need to be higher than those typical of oil production. The most commonly used geothermal pumps are driven by a transmission shaft and drive on the surface, or they use a submersible asynchronous induction motor. Surface-driven pumps, commonly called line-shaft pumps, have significant depth limitations. Submersible asynchronous induction motors cannot provide a sufficient volume of fluid supply and tend to overheat in high-temperature conditions. To compensate for the heat, induction motors must operate underloaded. Even so, they are subject to frequent premature failures with operating times of between 30 and 100 days. To solve the problem of cost-effective exploitation of geothermal fields, Novomet used its expertise with permanent magnet motors and high-speed pumps to develop an electrical submersible pumping system that would offer more reliability and runlife in geothermal conditions. A 254-mm (10-in.) geothermal submersible pumping (GSP) system was designed, manufactured, and tested with a production output of up to 12,000 m3/d (75,477 bbl/d, 139 l/s, 2201 gpm,). It featured new generation, high-efficiency pump stages and a permanent magnet motor with a capacity of up to 1.5 MW. The GSP system design was field tested in Turkey. Improvements to early system designs include the use of a heat-conducting filler in the materials used to compound the permanent magnet motor, the adoption of various high-temperature-rated components (AFLAS rubber elements, RYTON motor terminals, and heat-resistant motor oil), and the development of metal-to-metal sealing in the motor lead extension. One of the early GSP systems installed in the field performed reliably for 470 days at a frequency of 90 Hz, significantly exceeding the target runtime. More than thirty units with a total flow rate of 190,000 m3/d (1,195,000 bbl/d, 2199 l/s, 34,856 gpm) are currently in operation in Turkey. The electrical consumption savings average 25% for each GSP system with a permanent magnet motor compared to systems using asynchronous induction motors. While designed for geothermal applications, GSPs can also be used in oil and gas operations.


2014 ◽  
Vol 971-973 ◽  
pp. 376-379
Author(s):  
Hao Ming Zhang ◽  
Lian Soon Peh ◽  
Ying Hai Wang

Modern motor needs high speed, high efficiency, high power density and low pulsating torque, traditional rare earth permanent magnet motor manifests its limitation. Halbach motor is a novel permanent magnet motor. Analysis of Halbach motor based on ANSYS proves its merits: sinusoidal field, higher air gap flux and lower rotor yoke flux, which can reduce pulsating torque and improve power density, efficiency of the motor, these merits can improve its dynamic characteristics greatly.


2014 ◽  
Vol 651-653 ◽  
pp. 808-811
Author(s):  
Hao Ming Zhang ◽  
Hong Li ◽  
Lian Soon Peh

The present motors are required to high speed, high efficiency, high power density but low pulsating torque. Traditonal rare-earth permanent magnet motor shows its defect; Halbach Array is a new type of permanent magnet structure: magnet field presents unilateral with the sinusoidal distribution. The structure makes the magnetic density of motor’s air gap larger relatively while the magnetic density of rotor’s yoke smaller. And it can help to reduce the motor’s pulsating torque and its size, as well as to raise the power density of motor. The result of finite element analysis based on ANSYS shows that the above structure is able to decrease the mass of motor, to widen the width of air gap and obviously to improve the multi properties of motors.


2016 ◽  
Vol 31 (1) ◽  
pp. 132-140 ◽  
Author(s):  
Fengge Zhang ◽  
Guanghui Du ◽  
Tianyu Wang ◽  
Fengxiang Wang ◽  
Wenping Cao ◽  
...  

2021 ◽  
Author(s):  
Zhenning Qi ◽  
Yue Zhang ◽  
He Zhang ◽  
Xiuhe Wang ◽  
Huijun Wang ◽  
...  

2013 ◽  
Vol 694-697 ◽  
pp. 1508-1511
Author(s):  
Xing Hua Wang ◽  
Xue Yuan Lin ◽  
Ming Hui Li ◽  
Yu Chen ◽  
Cheng Hui Zhang

Soft ferrite has the characteristics of high permeability, high resistivity, low loss. Based on this, a new flux-weakening structure of high-speed permanent magnet motor was presented. The structure relies on changing the saturation of soft magnetic ferrite to change the equivalent magnetic resistance of permanent magnet magnetic circuit in the motor, so the main flux of the permanent magnet motor can be reduced. By the 3D Finite Element analyses, the magnetic field distribution characters in the air gap can be pointed out. The analysis results prove the flux-weakening method is presented in this paper is correct and feasible. It can provide a practical flux-weakening method of the high-speed PM motor.


Sign in / Sign up

Export Citation Format

Share Document