scholarly journals Modelling Strategies for the Numerical Simulation of the Behaviour of Corroded RC Columns under Cyclic Loads

2021 ◽  
Vol 11 (20) ◽  
pp. 9761
Author(s):  
Filippo Molaioni ◽  
Fabio Di Carlo ◽  
Zila Rinaldi

Rebars corrosion phenomena can modify the structural behaviour of reinforced concrete (RC) members and consequently the seismic performance of RC structures. Since many existing RC structures are affected by this phenomenon, the influence of the reinforcement corrosion on the seismic performance is still under examination, especially when the corrosive attack is localized in the dissipative areas of the plastic hinges. In this work, the effect of localized corrosion is numerically investigated, through the adoption of a suitable finite element model, object of validation with the outcomes of an experimental campaign carried out in the Laboratory of the University of Rome “Tor Vergata”, on un-corroded and corroded RC columns subjected to axial load and cyclic horizontal actions. Particular attention has been paid to the definition of the three-dimensional model and to the modelling of the corroded rebars and their corrosion morphology. Indeed, different modelling strategies are proposed with the aim to properly simulate the cyclic behaviour of the corroded columns. The main results show how more refined strategies taking into account the morphological aspects of the corrosion phenomenon produce a better fit with the experimental results for both Damage Control and Life Safety limit states performance.

Author(s):  
Tae-Hoon Kim

The aim of this study is to analytically assess the seismic performance of reinforced concrete (RC) columns with interlocking hoops using a novel damage index, and to provide data for developing next generation seismic design criteria. Seismic performance of RC columns is controlled by the level of confinement provided by transverse steel. Interlocking hoops are commonly used in RC columns because they can provide more effective confinement than rectangular hoops. Three RC interlocking columns were tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), is used to analyze RC structures. Novel damage indices aim to provide a means of quantifying numerically the performance level in RC columns with interlocking hoops sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of interlocking columns is verified by comparison with the experimental results.


Author(s):  
Gareth J. Morris ◽  
Desmond K. Bull ◽  
Brendon A. Bradley

Following the 2010-2011 Canterbury (New Zealand) earthquake sequence, lightly reinforced wall structures in the Christchurch central business district were observed to form undesirable crack patterns in the plastic hinge region, while yield penetration either side of cracks and into development zones was less than predicted using empirical expressions. To some extent this structural behaviour was unexpected and has therefore demonstrated that there may be less confidence in the seismic performance of conventionally designed reinforced concrete (RC) structures than previously anticipated. This paper provides an observation-based comparison between the behaviour of RC structural components in laboratory testing and the unexpected structural behaviour of some case study buildings in Christchurch that formed concentrated inelastic deformations. The unexpected behaviour and poor overall seismic performance of ‘real’ buildings (compared to the behaviour of laboratory test specimens) was due to the localization of peak inelastic strains, which in some cases has arguably led to: (i) significantly less ductility capacity; (ii) less hysteretic energy dissipation; and (iii) the fracture of the longitudinal reinforcement. These observations have raised concerns about whether lightly reinforced wall structures can satisfy the performance objective of “Life Safety” at the Ultimate Limit State. The significance of these issues and potential consequences has prompted a review of potential problems with the testing conditions and procedures that are commonly used in seismic experimentations on RC structures. This paper attempts to revisit the principles of RC mechanics, in particular, the influence of loading history, concrete tensile strength, and the quantity of longitudinal reinforcement on the performance of real RC structures. Consideration of these issues in future research on the seismic performance of RC might improve the current confidence levels in newly designed conventional RC structures.


2013 ◽  
Vol 671-674 ◽  
pp. 1319-1323
Author(s):  
Zi Xue Lei ◽  
Yu Hang Han ◽  
San Sheng Dong ◽  
Jun Qing Guo

A centrally reinforced column is a new type of RC columns, formed by providing a reinforcement skeleton at the central part of the cross section of an ordinary RC column. Tests have shown that as compared with an ordinary RC column, this type of columns has a higher load carrying capacity and ductility. From the pushover analysis of a frame composed of ordinary RC columns and one consisting of centrally reinforced columns, their seismic performance under seismic load of 9-degree intensity was studied according to Chinese code, including target displacements, story-level displacements, interstory drifts, appearance and development of plastic hinges. The results indicate that although the dimensions of cross sections of columns in the frame with centrally reinforced columns are smaller than those of the ordinary frame, the former still has a higher overall load carrying capacity and seismic performance than the latter.


2021 ◽  
pp. 136943322110105
Author(s):  
M.R. Mostakhdemin Hosseini ◽  
Salvador J.E. Dias ◽  
Joaquim A.O. Barros

The strengthening intervention of RC structures often involves already cracked concrete. To evaluate the effect of the level of damage prior to the strengthening (pre-cracks) on the behavior of the flexurally strengthened RC slabs with prestressed NSM CFRP laminates, an experimental research was carried out. Two pre-cracking levels of damage were analyzed and, for each one, three levels of prestress were tested (0%, 20% and 40%). The obtained results showed that the strengthening of damaged RC slabs with prestressed NSM CFRP laminates results in a significant increase on the load carrying capacity at serviceability limit states. Pre-cracked RC slabs strengthened with prestressed NSM CFRP laminates presented a load carrying capacity almost similar to the corresponding uncracked strengthened slabs. To determine the effective prestress level in CFRP laminates, the variation of strain over the length of the CFRP and over time was experimentally recorded. The prestress transfer length was also evaluated. The experimental results revealed that the transfer length of CFRP laminates was less than 150 mm, and the maximum value of strain loss out of transfer length (around 14%) was measured close to the cracked section of the damaged RC slabs. Significant part of strain loss in CFRP laminates occurred during 24 h after releasing the prestress load.


2018 ◽  
Vol 9 (4) ◽  
pp. 266-286 ◽  
Author(s):  
Salah F. El-Fitiany ◽  
Maged A. Youssef

Purpose Existing analytical methods for the evaluation of fire safety of reinforced concrete (RC) structures require extensive knowledge of heat transfer calculations and the finite element method. This paper aims to propose a rational method to predict the axial capacity of RC columns exposed to standard fire. Design/methodology/approach The average temperature distribution along the section height is first predicted for a specific fire scenario. The corresponding distribution of the reduced concrete strength is then integrated to develop expressions to calculate the axial capacity of RC columns exposed to fire from four faces. Findings These expressions provide structural engineers with a rational tool to satisfy the objective-based design clauses specified in the National Code of Canada in lieu of the traditional prescriptive methods. Research limitations/implications The research is limited to standard fire curves and needs to be extended to cover natural fire curves. Originality/value This paper is the first to propose an accurate yet simple method to calculate the axial capacity of columns exposed to standard fire curves. The method can be applied using a simple Excel sheet. It can be further developed to apply to natural fire curves.


Sign in / Sign up

Export Citation Format

Share Document