scholarly journals Convolutional Neural Networks Refitting by Bootstrapping for Tracking People in a Mobile Robot

2021 ◽  
Vol 11 (21) ◽  
pp. 10043
Author(s):  
Claudia Álvarez-Aparicio ◽  
Ángel Manuel Guerrero-Higueras ◽  
Luis V. Calderita ◽  
Francisco J. Rodríguez-Lera ◽  
Vicente Matellán ◽  
...  

Convolutional Neural Networks are usually fitted with manually labelled data. The labelling process is very time-consuming since large datasets are required. The use of external hardware may help in some cases, but it also introduces noise to the labelled data. In this paper, we pose a new data labelling approach by using bootstrapping to increase the accuracy of the PeTra tool. PeTra allows a mobile robot to estimate people’s location in its environment by using a LIDAR sensor and a Convolutional Neural Network. PeTra has some limitations in specific situations, such as scenarios where there are not any people. We propose to use the actual PeTra release to label the LIDAR data used to fit the Convolutional Neural Network. We have evaluated the resulting system by comparing it with the previous one—where LIDAR data were labelled with a Real Time Location System. The new release increases the MCC-score by 65.97%.

2017 ◽  
Vol 10 (27) ◽  
pp. 1329-1342 ◽  
Author(s):  
Javier O. Pinzon Arenas ◽  
Robinson Jimenez Moreno ◽  
Paula C. Useche Murillo

This paper presents the implementation of a Region-based Convolutional Neural Network focused on the recognition and localization of hand gestures, in this case 2 types of gestures: open and closed hand, in order to achieve the recognition of such gestures in dynamic backgrounds. The neural network is trained and validated, achieving a 99.4% validation accuracy in gesture recognition and a 25% average accuracy in RoI localization, which is then tested in real time, where its operation is verified through times taken for recognition, execution behavior through trained and untrained gestures, and complex backgrounds.


The management of the attendance can be an incredible weight on the instructors in the event that it is completed in registers. Determining this issue, keen and automatic attendance marking system by using the executive’s framework is being used. In any case, verification is a significant problem in this framework. Brilliant attendance framework is implemented commonly along with the assistance of soft biometrics. Acknowledgment of face is one of the updated biometric techniques this framework got to be enhanced. Being a principle element of biometric confirmation, facial acknowledgment feature has become most utilized enormously in a few such applications, similar to video observing and surveillance-based CCTV film framework, a connection between PC and people and admittance frameworks existing inside and in network security. By using this structure, the issue present in along with intermediaries, understudies also have been checking on the present despite the fact that they are not physically present can without much of a stretch be illuminated. The primary usage steps utilized regarding this sort of framework are facial discovery and perceiving the distinguished the different face of the people. This term paper recommends a perfect model for actualizing a computerized attendance the board framework in order to make understudies for a class by utilizing the procedure of acknowledgment-based face detection procedure, by means of utilizing Convolutional Neural Network (CNN), Max pooling


Pedestrians in the vehicle way are in peril of being hit, along these lines making extreme damage walkers and vehicle inhabitants. Hence, constant person on foot identification was done through a set of recorded videos and the system detects the persons/pedestrians in the given input videos. In this survey, a continuous plan was proposed dependent on Aggregated Channel Features (ACF) and CPU. The proposed technique doesn't have to resize the information picture neither the video quality. We also use SVM with HOG and SVM with HAAR to detect the pedestrians. In addition, the Convolutional Neural Networks (CNN) were trained with a set of pedestrian images datasets and later tested on some test-set of pedestrian images. The analyses demonstrated that the proposed technique could be utilized to distinguish people on foot in the video with satisfactory mistake rates and high prediction accuracy. In this manner, it tends to be applied progressively for any real-time streaming of videos and also for prediction of pedestrians in prerecorded videos.


Author(s):  
R. Niessner ◽  
H. Schilling ◽  
B. Jutzi

In recent years, there has been a significant improvement in the detection, identification and classification of objects and images using Convolutional Neural Networks. To study the potential of the Convolutional Neural Network, in this paper three approaches are investigated to train classifiers based on Convolutional Neural Networks. These approaches allow Convolutional Neural Networks to be trained on datasets containing only a few hundred training samples, which results in a successful classification. Two of these approaches are based on the concept of transfer learning. In the first approach features, created by a pretrained Convolutional Neural Network, are used for a classification using a support vector machine. In the second approach a pretrained Convolutional Neural Network gets fine-tuned on a different data set. The third approach includes the design and training for flat Convolutional Neural Networks from the scratch. The evaluation of the proposed approaches is based on a data set provided by the IEEE Geoscience and Remote Sensing Society (GRSS) which contains RGB and LiDAR data of an urban area. In this work it is shown that these Convolutional Neural Networks lead to classification results with high accuracy both on RGB and LiDAR data. Features which are derived by RGB data transferred into LiDAR data by transfer learning lead to better results in classification in contrast to RGB data. Using a neural network which contains fewer layers than common neural networks leads to the best classification results. In this framework, it can furthermore be shown that the practical application of LiDAR images results in a better data basis for classification of vehicles than the use of RGB images.


Author(s):  
Muhammad Hanif Ahmad Nizar ◽  
Chow Khuen Chan ◽  
Azira Khalil ◽  
Ahmad Khairuddin Mohamed Yusof ◽  
Khin Wee Lai

Background: Valvular heart disease is a serious disease leading to mortality and increasing medical care cost. The aortic valve is the most common valve affected by this disease. Doctors rely on echocardiogram for diagnosing and evaluating valvular heart disease. However, the images from echocardiogram are poor in comparison to Computerized Tomography and Magnetic Resonance Imaging scan. This study proposes the development of Convolutional Neural Networks (CNN) that can function optimally during a live echocardiographic examination for detection of the aortic valve. An automated detection system in an echocardiogram will improve the accuracy of medical diagnosis and can provide further medical analysis from the resulting detection. Methods: Two detection architectures, Single Shot Multibox Detector (SSD) and Faster Regional based Convolutional Neural Network (R-CNN) with various feature extractors were trained on echocardiography images from 33 patients. Thereafter, the models were tested on 10 echocardiography videos. Results: Faster R-CNN Inception v2 had shown the highest accuracy (98.6%) followed closely by SSD Mobilenet v2. In terms of speed, SSD Mobilenet v2 resulted in a loss of 46.81% in framesper- second (fps) during real-time detection but managed to perform better than the other neural network models. Additionally, SSD Mobilenet v2 used the least amount of Graphic Processing Unit (GPU) but the Central Processing Unit (CPU) usage was relatively similar throughout all models. Conclusion: Our findings provide a foundation for implementing a convolutional detection system to echocardiography for medical purposes.


Author(s):  
Sachin B. Jadhav

<span lang="EN-US">Plant pathologists desire soft computing technology for accurate and reliable diagnosis of plant diseases. In this study, we propose an efficient soybean disease identification method based on a transfer learning approach by using a pre-trained convolutional neural network (CNN’s) such as AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201. The proposed convolutional neural networks were trained using 1200 plant village image dataset of diseased and healthy soybean leaves, to identify three soybean diseases out of healthy leaves. Pre-trained CNN used to enable a fast and easy system implementation in practice. We used the five-fold cross-validation strategy to analyze the performance of networks. In this study, we used a pre-trained convolutional neural network as feature extractors and classifiers. The experimental results based on the proposed approach using pre-trained AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201 networks achieve an accuracy of 95%, 96.4 %, 96.4 %, 92.1%, 93.6% respectively. The experimental results for the identification of soybean diseases indicated that the proposed networks model achieves the highest accuracy</span>


2021 ◽  
Author(s):  
Shima Baniadamdizaj ◽  
Mohammadreza Soheili ◽  
Azadeh Mansouri

Abstract Today integration of facts from virtual and paper files may be very vital for the expertise control of efficient. This calls for the record to be localized at the photograph. Several strategies had been proposed to resolve this trouble; however, they may be primarily based totally on conventional photograph processing strategies that aren't sturdy to intense viewpoints and backgrounds. Deep Convolutional Neural Networks (CNNs), on the opposite hand, have demonstrated to be extraordinarily sturdy to versions in history and viewing attitude for item detection and classification responsibilities. We endorse new utilization of Neural Networks (NNs) for the localization trouble as a localization trouble. The proposed technique ought to even localize photos that don't have a very square shape. Also, we used a newly accrued dataset that has extra tough responsibilities internal and is in the direction of a slipshod user. The end result knowledgeable in 3 exclusive classes of photos and our proposed technique has 83% on average. The end result is as compared with the maximum famous record localization strategies and cell applications.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 13
Author(s):  
Raveendra K ◽  
R Vinoth Kanna

Automatic logo based document image retrieval process is an essential and mostly used method in the feature extraction applications. In this paper the architecture of Convolutional Neural Network (CNN) was elaborately explained with pictorial representations in order to understand the complex Convolutional Neural Networks process in a simplified way. The main objective of this paper is to effectively utilize the CNN in the process of automatic logo based document image retrieval methods.  


2021 ◽  
Vol 2089 (1) ◽  
pp. 012013
Author(s):  
Priyadarshini Chatterjee ◽  
Dutta Sushama Rani

Abstract Automated diagnosis of diseases in the recent years have gain lots of advantages and potential. Specially automated screening of cancers has helped the clinicians over the time. Sometimes it is seen that the diagnosis of the clinicians is biased but automated detection can help them to come to a proper conclusion. Automated screening is implemented using either artificial inter connected system or convolutional inter connected system. As Artificial neural network is slow in computation, so Convolutional Neural Network has achieved lots of importance in the recent years. It is also seen that Convolutional Neural Network architecture requires a smaller number of datasets. This also provides them an edge over Artificial Neural Networks. Convolutional Neural Networks is used for both segmentation and classification. Image dissection is one of the important steps in the model used for any kind of image analysis. This paper surveys various such Convolutional Neural Networks that are used for medical image analysis.


2021 ◽  
Vol 5 (2) ◽  
pp. 312-318
Author(s):  
Rima Dias Ramadhani ◽  
Afandi Nur Aziz Thohari ◽  
Condro Kartiko ◽  
Apri Junaidi ◽  
Tri Ginanjar Laksana ◽  
...  

Waste is goods / materials that have no value in the scope of production, where in some cases the waste is disposed of carelessly and can damage the environment. The Indonesian government in 2019 recorded waste reaching 66-67 million tons, which is higher than the previous year, which was 64 million tons. Waste is differentiated based on its type, namely organic and anorganic waste. In the field of computer science, the process of sensing the type waste can be done using a camera and the Convolutional Neural Networks (CNN) method, which is a type of neural network that works by receiving input in the form of images. The input will be trained using CNN architecture so that it will produce output that can recognize the object being inputted. This study optimizes the use of the CNN method to obtain accurate results in identifying types of waste. Optimization is done by adding several hyperparameters to the CNN architecture. By adding hyperparameters, the accuracy value is 91.2%. Meanwhile, if the hyperparameter is not used, the accuracy value is only 67.6%. There are three hyperparameters used to increase the accuracy value of the model. They are dropout, padding, and stride. 20% increase in dropout to increase training overfit. Whereas padding and stride are used to speed up the model training process.


Sign in / Sign up

Export Citation Format

Share Document