scholarly journals Interval Type-2 Fuzzy Logic Control-Based Frequency Control of Hybrid Power System Using DMGS of PI Controller

2021 ◽  
Vol 11 (21) ◽  
pp. 10217
Author(s):  
Swati Rawat ◽  
Bhola Jha ◽  
Manoj Kumar Panda ◽  
Jyotshana Kanti

The load frequency control of a microgrid is one of the emerging areas due to the changes in demand and supply in power system. So the controllers’ implementation must be changed accordingly. This paper proposes an interval type-2 fuzzy logic-based, dual-mode gain scheduling (DMGS) of the proportional and integral controller in which the gains of the PI controller werescheduled through the dynamic selector. This proposed controller was implemented ina hybrid microgrid power system in which nonconventional energy sources wereadded to each area of the conventional power plant, which madethe system much more prone to frequency variations. The controller was designed for three areas, consisting of a photovoltaic (PV) system, a wind power system, a fuel cell and a diesel engine/hydropower generator in which the generation rate constraint (GRC) was considered as a nonlinearity. The proposed power system was investigated under various load conditions in the MATLAB/SIMULINK environment. A comparative evaluation of changes in frequency, tie-line power fluctuations and variations in area control errors for the test system showed the effectiveness of the current approach over simple fuzzy PI and a conventional PI-controlling approach.

2018 ◽  
Vol 17 (1) ◽  
pp. 107
Author(s):  
Gusti Made Ngurah Christy Aryanata ◽  
I Nengah Suweden ◽  
I Made Mataram

A good electrical power system is a system that can serve the load in a sustainable and stable voltage and frequency. Changes in frequency occur due to the demand of loads that change from time to time. The frequency setting of the PLTG power system depends on the active power charge in the system. This active power setting is done by adjusting the magnitude of the generator drive coupling. The frequency setting is done by increasing and decreasing the amount of primary energy (fuel) and carried on the governor. Simulation in governor analysis study as load frequency control at PLTG using fuzzy logic controller is done by giving four types of cultivation that is 0,1 pu, 0,2pu, 0,3 pu and 0,4 pu. The simulation is done to compare the dynamic frequency response output and the resulting stability time using fuzzy logic controller with PI controller. Based on the results of comparative analysis conducted to prove that governor as load frequency control using fuzzy logic control is better than using PI controller. This can be seen from the output response frequency and time stability.


2021 ◽  
pp. 494-505
Author(s):  
Pulakraj Aryan ◽  
Mrinal Ranjan ◽  
Ravi Shankar

This paper deals about the Load Frequency Control (LFC) of two-area deregulated power system with multiple generation sources using interval type-2 fuzzy proportional-integral-derivative (IT2FPID) controller. LFC is the mechanism by which the power system tries to restore its nominal frequency after it has been subjected to load fluctuations. The control areas considered for this paper comprise of thermal generating unit with reheat turbine and gas unit. Considering practical scenario of operation appropriate generation rate constraint (GRC) has been considered for each units. The gain parameters of IT2FPID controller have been optimized by Equilibrium Optimizer (EO). The dynamic response to load disturbances have been compared with prevalent controller schemes to bring about the efficacy of the prospective work.


Author(s):  
Muhammad Abdillah ◽  

Load frequency control (LFC) problem has been a foremost issue in electrical power system operation and is becoming more important recently with growing size, changing structure, and complexity in interconnected power systems. In general, LFC system utilizes simple proportional integral (PI) controller. However, due to the PI control parameters are commonly adjusted based on classical or trial-error method (TEM), it is incapable of obtaining good dynamic performance for a wide range of operating conditions and various load change scenarios in a multi-area power system. This paper introduces a novel control scheme for load frequency control (LFC) using hybrid fuzzy proportional integral (fuzzy PI) and linear quadratic regulator (LQR) optimal control, where fuzzy logic control (FLC) is used to adjust the gains KP and KI of PI controller which called fuzzy PI in this paper, while the LQR optimal control method is employed to obtain the feedback gain KOP through Algebraic Riccati Equation (ARE). The merit of both control strategies is to tune their control feedback gains, which are KP, KI and KOP, regarding various system operating conditions. Artificial immune system (AIS) via clonal selection is utilized to optimize the membership function (MF) of fuzzy PI and weighting matrices Q and R of LQR optimal control in order to obtain their optimal feedback gains. To examine the efficacy of the proposed method, LFC of two-area power system model is utilized as a test system. The amalgamation of fuzzy PI-LQR is applied to improve the dynamic performance of two-area LFC. Other control schemes such as PI controller, hybrid PI controllerLQR, and hybrid fuzzy PI-LQR are also investigated to the studied a test system. The obtained simulation results show that the proposed method could compress the settling time and decrease the overshoot of LFC which is better than other approaches that are also employed to the tested system in this study.


Author(s):  
Peter Anuoluwapo Gbadega ◽  
Akshay Kumar Saha

Frequency control is becoming increasingly critical today due to the growing size and changing structure of complex interconnected power networks. Scaling up economic pressures for efficiency and reliability of the power system has necessitated a requirement for maintaining system frequency, and tie-line power flows as close as possible to scheduled values. High-frequency deviations may degrade load performance, damage equipment, resulting in overloading of transmission lines, which may interfere with system protection schemes, and, finally, may also result in an unstable condition of the power system. More so, Load Frequency Control ( LFC) plays a vital role in the modern power system as an auxiliary service to support power exchanges and, at the same time, to provide better conditions for the trading of electricity. Therefore, the tuning of the dynamic controller (i.e., net frequency and net power interchange errors) is a significant factor in achieving optimum LFC performance. Appropriate tuning of the controller parameters is required in order to achieve excellent control action. In view of this, this paper introduces the dynamic tuning of controller parameters in a two-area multi-source power system with an AC-DC parallel tie line for optimum load-frequency control performance. Matlab/Simulink software is used to realize the system simulation. System dynamic performance is observed for conventional PID tuning by the Ziegler Nichols method and the Kitamori method, fuzzy logic controllers, fuzzy-logic PID controllers, fuzzy PID controllers, and polar-Fuzzy controllers. Furthermore, the frequency and tie-line power response of the interconnected areas were compared based on the setting-time, peak-overshoot, and peak-undershoot. The simulation results show that the responses of the fuzzy-based controllers are faster than those of the classical controllers, resulting in minimized frequency and tie-line power deviations.


2020 ◽  
Vol 39 (6) ◽  
pp. 8273-8283
Author(s):  
N. Kirn Kumar ◽  
V. Indra Gandhi

As the world is moving towards green energy generation to reduce the pollution by renewable sources such as wind, solar, geothermal and more. These sources are intermittent in nature, to coordinate and control with traditional power generating units a control technique is necessary. This paper mainly focuses on the design of fuzzy based classical controller using a PSO algorithm for optimal controller gains to control the frequency variations in island hybrid power system. The considered mathematical model comprises of a diesel generating model, wind turbine generator and a battery storage system. Fuzzy is an intelligent controller which is designed with trial and error rules or on the basis of past experience provided by experts or by optimization methods for optimized gains using computational algorithms. To give best solution for these kinds of problems with FLCs traditional controllers are integrated with fuzzy logic. The PSO algorithm is applied to tune the classical controller gains to decrease the frequency deviation of the island power system, during the different load and wind disturbances. The Fuzzy PID classical controller shows the best performance compared with the only fuzzy and Fuzzy-PI controller configurations by illustrating the under shoot, overshoot and settling time and the proposed method is robust for various loading conditions and different wind changes.


Sign in / Sign up

Export Citation Format

Share Document