scholarly journals Optimization Design of the Lower Rocker Arm of a Vertical Roller Mill Based on ANSYS Workbench

2021 ◽  
Vol 11 (21) ◽  
pp. 10408
Author(s):  
Weihua Wei ◽  
Jicheng Shen ◽  
Haipeng Yu ◽  
Bingrui Chen ◽  
Yu Wei

The lower rocker arm is an important part of the vertical roller mill and its lightweight design is of great significance for reducing the mass and production cost of the roller mill. Firstly, the strength and deformation distribution of the lower rocker arm under working load were analyzed by ANSYS Workbench to determine the maximum stress and maximum deformation. The parts with large strength margin were used as the basis for the optimal design. During the analysis, firstly, the arm body of the lower rocker arm was determined part of the lightweight design. Secondly, the mass of the lower rocker arm was taken as the optimization target, the stress and displacement generated by the load of the lower rocker arm were taken as the constraint conditions, the structural size of the internal cavity of the lower rocker arm was taken as the optimization design parameter, and the mathematical model of the optimization design was established. Finally, the structural size of the internal cavity of the lower rocker arm was optimized by using the response surface optimization module and multi-objective genetic algorithm in ANSYS Workbench. The optimum results show that, compared with the original design model, the lower rocker mass was reduced by 346.3 kg and the decrease was about 5.29%, while the strength and deformation were nearly unchanged. Therefore, by optimizing the design, the material is saved and the cost is reduced, which can provide a reference basis for the design and light weight of the lower rocker arm.

2021 ◽  
Vol 11 (20) ◽  
pp. 9584
Author(s):  
Weihua Wei ◽  
Fangxu Peng ◽  
Yingli Li ◽  
Bingrui Chen ◽  
Yiqi Xu ◽  
...  

Firstly, the force of an extrusion roller under actual working condition was analyzed while the contact stress between the roller shaft and the roller sleeve and the extrusion force between the roller sleeve and the material were calculated. Secondly, static analysis of the extrusion roller was carried out using ANSYS software, and conclusively, the stress concentration appears at the roller sleeve’s inner ring step. Furthermore, an optimization scheme of the setting transition arc at the step of the contact surface between roller shaft and roller sleeve was proposed, and a simulation test was carried out., Finally, the maximum equivalent stress of the extrusion roller was set at the minimum value of the objective function; the extrusion roller was further optimized by using the direct optimization module in ANSYS Workbench. The results from optimization show that the maximum equivalent stress is reduced by 29% and the maximum deformation is decreased by 28%. It can be seen that the optimization scheme meets the strength and deformation requirements of the extrusion roller design. The optimization scheme can effectively improve the bearing capacity of the extrusion roller and reduce its production cost. This can provide a reference for the design of the roller press.


2013 ◽  
Vol 694-697 ◽  
pp. 2725-2728
Author(s):  
Xuan Mu ◽  
Ke Zhang ◽  
De Hong Zhao ◽  
Yu Hou Wu

To reduce the overall mass of the machine tools, this paper made the structural lightweight design to crossbeams of the HTM series gantry machine by topology optimization. The topology optimization mathematical model was built by taking the quality as the constraint, overall stiffness to the maximum (complicance to the minimum) as the design goals. It also took HTM50200 Turning Milling Center as an example, put forward an asymmetric layout structure of auxiliary hole according to the optimization results by numerical simulation and calculation of ANSYS. By verified, the mass of the structure was 2.76% lower than traditional structure, and the maximum deformation decreased by 16.07%. By applying the topology optimization method to the design process of the HTM series machining center, the utilization of materials will be improved and the production costs will be reduced.


2011 ◽  
Vol 230-232 ◽  
pp. 824-828
Author(s):  
Kun Cheng

Based on illuminating the structure,working principle and force analysis of vertical roller mill, the finite element analysis of rocker arms is carried out on ANSYS Workbench (AWE) platform. First of all, the structure of rocker arms and grinding roll components are simplified,then the three-dimensional entity model and meshing model of vertical roller mill both are established. Secondly, the material attribute,contact type,loads and constraints of rocker arms and grinding roll components are defined,and the total deformation, equivalent stress and safety factor of rocker arms are gained after numerical calculation.Results show that the up rocker could meet basically application requirements for its uniform stress distribution.But the lower rocker cannot meet the strength requirements for its low safety factor,and it is necessary to optimize the structure for improving the safety coefficient of lower rocker.


2012 ◽  
Vol 268-270 ◽  
pp. 921-925
Author(s):  
Li Wen Wang ◽  
Qiang Wang ◽  
Wei Zhang

The 3-D frame model of towbarless aircraft tractor was established with the UG software, and then transferred into ANSYS Workbench to conduct the finite element static analysis to check the bending strength of the frame on maximum load working conditions. Using topology optimization module, original design of frame was optimized in accordance with the calculation result. It shows that the strength of optimized frame meet the design requirements, while the weight of optimized frame is reduced by 8%.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 403
Author(s):  
Shuang Wu ◽  
Jiefang Xing ◽  
Ling Dong ◽  
Honjuan Zhu

In order to improve the structural stiffness of the gravure cell structure in the solid printing process and realize a lightweight design, a multi-objective optimization design method was proposed to optimize the parameters of the direct laser engraving of the cell structure. In this paper, based on the characteristics of the cell structure and the analysis of the contact force, the ANSYS parametric design language (APDL) was used to conduct a finite element analysis on the microstructure of the regular hexagonal cell. We found that there is a certain optimization space. Then, a response surface (RSM) method optimization model, using a central composite design (CCD), was established to obtain, and then analyze, the sensitivity of each design variable to the objective functions. Finally, a multi-objective genetic algorithm (MOGA) was used to solve the model. The optimization results show that the maximum deformation was reduced by 44.4%, and the total volume was reduced by 46.3%. By comparing with the model before optimization, the rationality and effectiveness of this method were verified. This shows that the method can be effectively applied to the design optimization of gravure cell microstructure, and it provides theoretical support for new cell design.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaohong Zhao ◽  
Xianguo Yan ◽  
Zhi Chen ◽  
Hang Su

Since the output torque of the rotary reducer of the ZYL-15000D-kilometer directional drill is proportional to the gear train transmission ratio, the output torque is large enough when the input speed and output speed meet the design goal. This paper selects the method of reducing the transmission ratio to optimize the size parameters of the reducer. MATLAB genetic algorithm is used in the optimization design, and the minimum volume of the rotary part reducer is taken as the objective of optimization design, while the design variables and constraints are determined. The optimal value of design variables was obtained through optimization, and the parameter values of each gear were determined accordingly. Through analysis, the total volume of the optimized gear reducer was reduced by 49.6%. Then, the 3D model of the optimized gear was created, and the analysis of the transient dynamics of the optimized gear was carried out with ANSYS Workbench software. According to the analysis results, the optimized gear met the strength requirements and provided a reference for the subsequent optimization design of other types of gear reducers.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chang Liu ◽  
Zuobing Chen ◽  
Weili Zhang ◽  
Chenggang Yang ◽  
Ya Mao ◽  
...  

The vertical roller mill is an important crushing and grading screening device widely used in many industries. Its classification efficiency and the pressure difference determine the entire producing capacity and power consumption, respectively, which makes them the two key indicators describing the mill performance. Based on the DPM (Discrete Phase Model) and continuous phase coupling model, the flow field characteristics in the vertical roller mill including the velocity and pressure fields and the discrete phase distributions had been analyzed. The influence of blade parameters like the shape, number, and rotating speed on the flow field and classification performance had also been comprehensively explored. The numerical simulations showed that there are vortices in many zones in the mill and the blades are of great significance to the mill performance. The blade IV not only results in high classification efficiency but also reduces effectively the pressure difference in the separator and also the whole machine. The conclusions of the flow field analysis and the blade effects on the classification efficiency and the pressure difference could guide designing and optimizing the equipment structure and the milling process, which is of great importance to obtain better overall performance of the vertical roller mill.


Sign in / Sign up

Export Citation Format

Share Document