scholarly journals Study on the Earth Pressure during Sinking Stage of Super Large Caisson Foundation

2021 ◽  
Vol 11 (21) ◽  
pp. 10488
Author(s):  
Mingwei Guo ◽  
Xuechao Dong ◽  
Jiahang Li

End resistance is a dominant variable in the sinking process of super-sized caisson foundation, which is of great importance to the safe sinking of the caisson foundation. Based on soil excavation process of super large caisson foundation of the main tower of Changtai Yangtze River Bridge, the distribution characteristics and variation of earth pressure under the foot blade was analyzed using 3D finite element method at the first stage of soil excavation. Furthermore, the earth pressure was monitored in real time during soil excavation in order to analyze the influence of soil excavation process on the distribution of earth pressure. The analysis results of engineering practice showed that in the process of soil excavation from inner area to outer area, the end resistance of inner bulkhead and inner partition walls decreased, while the end resistance of outer bulkhead and outer partition walls gradually increased till the soil reached the failure state in the outer bulkhead area. The distribution characteristics and variation of the earth pressure can really reflect overall stress state of caisson foundation, which helps guide the safe sinking by soil excavation.

2013 ◽  
Vol 671-674 ◽  
pp. 251-256
Author(s):  
Jing Cao ◽  
Kai Yu Jiang ◽  
Yue Gui ◽  
Hai Ming Liu

The double-row piles retaining structure (DRPRS) is widely applied in the excavation engineering, but its calculation theory is immature and in appropriate. Based on the theory of earth pressure distribution, the distribution characteristics of earth pressure is analyzed to different layout form, and the general formula of earth pressure is derived. From the perspectives of the morphology of slip surface, linear slip surface morphology and broken-line slip surface morphology are proposed based on the feature of the DRPRS. A new calculation model is proposed combining the earth pressure and slip surface morphology. On this basis, one example is used to analyze the force and deformation mechanism of the DRPRS in detail. The research results can guide the engineering practices and promote the development of calculation theory for the DRPRS.


Author(s):  
Xuanyu Liu ◽  
Wentao Wang ◽  
Yudong Wang ◽  
Cheng Shao ◽  
Qiumei Cong

During shield machine tunneling, the earth pressure in the sealed cabin must be kept balanced to ensure construction safety. As there is a strong nonlinear coupling relationship among the tunneling parameters, it is difficult to control the balance between the amount of soil entered and the amount discharged in the sealed cabin. So, the control effect of excavation face stability is poor. For this purpose, a coordinated optimization control method of shield machine based on dynamic fuzzy neural network (D-FNN) direct inverse control is proposed. The cutter head torque, advance speed, thrust, screw conveyor speed and earth pressure difference in the sealed cabin are selected as inputs, and the D-FNN control model of the control parameters is established, whose output are screw conveyor speed and advance speed at the next moment. The error reduction rate method is introduced to trim and identify the network structure to optimize the control model. On this basis, an optimal control system for earth pressure balance (EPB) of shield machine is established based on the direct inverse control method. The simulation results show that the method can optimize the control parameters coordinately according to the changes of the construction environment, effectively reduce the earth pressure fluctuations during shield tunneling, and can better control the stability of the excavation surface.


2005 ◽  
Vol 90 (6) ◽  
pp. 55-58 ◽  
Author(s):  
Ming Xu ◽  
Alan G. Bloodworth

1987 ◽  
Vol 46 (2) ◽  
pp. 171-178 ◽  
Author(s):  
J. M. Driessen

The writer investigates possible anti-seismic construction techniques used in Minoan architecture on Bronze Age Crete. The frequency of earthquakes in the Aegean seems to imply the presence of such techniques. Starting by noting the methods still in use in Turkey and other dangerous areas, the writer looks at the practice of projections and setbacks, the near absence of windows, room dimensions, roof and floor construction, the presence of partition walls, the size and number of stories, town planning, the presence of cornices and ring beams, and other construction details which helped to improve the anti-seismic capability of Minoan houses. Attention is given to the location of houses and to the question of whether or not the Minoans used these methods consciously. The writer believes they did, not only because of the frequency of these earthquakes but also because of the religious connotations and the existence of an architectural koiné in earthquake-stricken areas in the ancient Mediterranean and Near East, in contrast with Egypt.


2013 ◽  
Vol 405-408 ◽  
pp. 1815-1819
Author(s):  
Wen Sheng Yu ◽  
Zhu Long Li ◽  
Xiao Ru Xie ◽  
Li Yuan Guo

To analyze the earth pressure of corrugated steel culvert under high fill embankment, a field test was taken and the change law was got with the filling height increasing, the force state when geotechnical grilles were laid on the top of corrugated steel culvert was compared to that of reinforced concrete slab culvert. Results show that the pressure on the top of corrugated steel culvert is smaller than that on the external in same level when test points are near to culvert, the values of test points above and below geotechnical grilles are close, and the pressure of corrugated steel culvert is smaller than that of reinforced concrete slab culvert when filling height is above 7.3 m. So analysis indicates corrugated steel culvert spreads the upper load better, the geotechnical grille can reduce the pressure effectively through earth pressure redistribution, and the mechanical property of corrugated steel culvert is better than reinforced concrete slab culvert under high fill embankment.


2012 ◽  
Vol 17 (2) ◽  
pp. 371-381 ◽  
Author(s):  
Alan G. Bloodworth ◽  
Ming Xu ◽  
James R. Banks ◽  
Chris R. I. Clayton

2018 ◽  
Vol 52 (1-2) ◽  
pp. 3-10 ◽  
Author(s):  
Xuanyu Liu ◽  
Kaiju Zhang

Background: Earth pressure balance shield machines are widely used in underground engineering. To prevent ground deformation even disastrous accidents, the earth pressure in soil chamber must be kept balance to that on excavation face during shield tunneling. Therefore, in this paper an advanced control strategy that a least squares support vector machine model-based predictive control scheme for earth pressure balance is developed. Methods: A prediction model is established to predict the earth pressure in chamber during the tunneling process by means of least squares support vector machine technology. On this basis, an optimization function is given which aims at minimizing the difference between the predicted earth pressure and the desired one. To obtain the optimal control actions, an improved ant colony system algorithm is used as rolling optimization for earth pressure balance control in real time. Results: Based on the field data the simulation experiments are performed. The results demonstrate that the method proposed is very effective to control earth pressure balance, and it has good stability. Conclusion: The screw conveyor speed and advance speed are the major factors affecting the earth pressure in chamber. The excavation face could be controlled balance better by adjusting the screw conveyor speed and advance speed.


Sign in / Sign up

Export Citation Format

Share Document