Research on Calculation Theory of Double-Row Piles Retaining Structure

2013 ◽  
Vol 671-674 ◽  
pp. 251-256
Author(s):  
Jing Cao ◽  
Kai Yu Jiang ◽  
Yue Gui ◽  
Hai Ming Liu

The double-row piles retaining structure (DRPRS) is widely applied in the excavation engineering, but its calculation theory is immature and in appropriate. Based on the theory of earth pressure distribution, the distribution characteristics of earth pressure is analyzed to different layout form, and the general formula of earth pressure is derived. From the perspectives of the morphology of slip surface, linear slip surface morphology and broken-line slip surface morphology are proposed based on the feature of the DRPRS. A new calculation model is proposed combining the earth pressure and slip surface morphology. On this basis, one example is used to analyze the force and deformation mechanism of the DRPRS in detail. The research results can guide the engineering practices and promote the development of calculation theory for the DRPRS.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yijun Zhou ◽  
Aijun Yao ◽  
Haobo Li ◽  
Xuan Zheng

In order to study the earth pressure and the deformation behavior of the double-row piles in foundation excavation, a large-scale physical model test was introduced to simulate deformation of double-row piles in foundation excavation based on the principle of similarity theory in this paper. Represented by the deep foundation pit engineering of Changchun, the strain and the displacement of the double-row piles and the earth pressure are calculated by the above-mentioned physical model test. Then a numerical simulation has been carried out to validate practicability of the physical model test. The results show that the strain and the displacement of the front-row piles are larger than the back-row piles. The earth pressure of the front-row piles appears to be “right convex,” correcting the specification of the earth pressure and putting forward the coefficient of β. The results in this paper may provide constructive reference for practical engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Dan Zhang ◽  
Zhiping Hu ◽  
Ganggang Lu ◽  
Rui Wang ◽  
Xiang Ren

This paper discusses the deformation mechanism of a utility tunnel crossing active ground fissures in Xi’an as observed in a physical model test. The purpose of this work is to confirm the precise effects of ground fissures on utility tunnels. The physical simulation experiment is carried out to measure the earth pressure and the strain relationship of the structure and the structural displacement. The structure appears to have been destroyed by torsion. The structural deformation located in the tunnel’s footwall was more serious than that in the hanging wall. However, at the top of the utility tunnel structure, the earth pressure in the footwall was less than that in the hanging wall. The increased range of the hanging wall at 0.3–1.5 m (the prototype within the range of 22.5 m) and decreased range of the footwall at 0.3–0.8 m (the prototype within the range of 12 m) were basically consistent with changes in the contact pressure at the structure’s bottom. This was roughly consistent with the main deformation zone of ground fissures mentioned in the specification, with the hanging wall at 0–20 m and footwall at 0–12 mm. Displacement meter data shows that the structure tends to deform to the lower right as the utility tunnel is “twisted” clockwise. These observations mark a notable departure from the previously published failure mode of metro tunnels under active ground fissures.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhihui Wang ◽  
Aixiang Wu ◽  
Yiming Wang

A method was proposed to calculate the earth pressure from a cohesionless backfill with a high aspect ratio (ratio of height to width of retaining wall). An exponential equation of slip surface was proposed first. The proposed nonlinear slip surface equation can be obtained once the width and height of the backfill as well as the internal friction angle of the backfill were given. The failure surface from the proposed formula agreed well with the experimental slip surface. Then, the earth pressure was calculated using a simplified equilibrium equation based on the proposed slip surface. It is assumed that the minor principal stress of the backfill near the wall and at its corresponding slip surface where the depth is the same is the same. Thus, based on the vertical force balance of the horizontal backfill strip, assuming the wall-soil interface and the slip surface is in the limit equilibrium state, defined by the Mohr–Coulomb criterion, the differential equilibrium equation was obtained and numerically solved. The calculated results agreed well with the test data from the published literature.


2011 ◽  
Vol 90-93 ◽  
pp. 707-713 ◽  
Author(s):  
Yong Gang Li ◽  
Shu Yan Xing ◽  
Lin Wei Feng

The vertical earth pressure on the top of ditch-buried culverts was analyzed theoretically under the condition of trapezoidal ditch and square culverts. A calculation model to evaluate the earth pressure on the top of the culverts based on Duncan earth model was established. The study results show that the height of plane of equal settlement decreases and turns to a constant gradually as the depth of soil overlying culverts increases. The primary influencing factors of earth pressure are the ditch width and the ratio of height to width of the culverts and the foundation. Each of them can make the coefficient of earth pressure increase or decrease more than 30%. When the width of the culverts become wider, ditch buried culverts turn to projecting buried culverts gradually, and the uniform calculation theory of earth pressure on the top of ditch-buried culverts and positive buried culverts is formed.


2021 ◽  
Vol 11 (21) ◽  
pp. 10488
Author(s):  
Mingwei Guo ◽  
Xuechao Dong ◽  
Jiahang Li

End resistance is a dominant variable in the sinking process of super-sized caisson foundation, which is of great importance to the safe sinking of the caisson foundation. Based on soil excavation process of super large caisson foundation of the main tower of Changtai Yangtze River Bridge, the distribution characteristics and variation of earth pressure under the foot blade was analyzed using 3D finite element method at the first stage of soil excavation. Furthermore, the earth pressure was monitored in real time during soil excavation in order to analyze the influence of soil excavation process on the distribution of earth pressure. The analysis results of engineering practice showed that in the process of soil excavation from inner area to outer area, the end resistance of inner bulkhead and inner partition walls decreased, while the end resistance of outer bulkhead and outer partition walls gradually increased till the soil reached the failure state in the outer bulkhead area. The distribution characteristics and variation of the earth pressure can really reflect overall stress state of caisson foundation, which helps guide the safe sinking by soil excavation.


1998 ◽  
Vol 35 (4) ◽  
pp. 591-599 ◽  
Author(s):  
Zuyu Chen ◽  
Songmei Li

The generalized method of slices, commonly used in slope stability analysis, can be extended to determine active earth pressures applied to various types of supports. The governing force and moment equlibrium equations are given. In a similar manner to slope stability analysis, the methods of optimization are used to define the critical slip surface that is associated with the maximum wall pressure. Examples show that the approaches give active earth pressures identical to the Rankine solution for gravity walls. For other types of support, such as anchored or strutted walls, the earth pressure is determined by assigning appropriate locations of the point of application on the wall. It has been found that applying the restrictions of physical admissibility is more vital in earth pressure problems than in slope stability assessments.Key words: earth pressure, limit equilibrium method, the method of slices, retaining walls.


2011 ◽  
Vol 243-249 ◽  
pp. 953-958
Author(s):  
Bo Yan ◽  
Guo Long Yang ◽  
Hui Lin ◽  
Chang Xue Shi

In order to improving the launching technique in soft layer, the paper proposed the soil-chamber under pressure on the launching technique basing on engineering practices. The main principle is: using the earth pressure equilibrium, grouting the filling material when the Shield launching, establishing the active earth pressure ahead of time, which makes in advance the action pressure supports to the coarse sand cross section, that prevents from the water and soil spouting effectively. Because the active earth pressure, enhance the initial sending safety coefficient, and shorten the reinforcement length of the initial launching, and decrease the initial launching cost.


2012 ◽  
Vol 256-259 ◽  
pp. 507-513
Author(s):  
Shou Ze Cheng ◽  
Wei Hua Wang ◽  
Chang Jie Xu

Incremental method, as one of the practical calculation methods in retaining structure design of foundation pit, has been widely used. When incremental method is applied, the earth pressure, acting on the retaining structure on each incremental step, is considered as static earth pressure. Actually, the state of earth pressure changes constantly with the increase of soil displacement in the process of excavation. This paper introduces the relation of displacement and earth pressure based on the soil stress-strain state, and makes corrections for the earth pressure of the incremental method. By comparing with the measured data of the engineering, the calculation results, which consider earth pressure modification, are in good line with the practical engineering condition. The method in this paper can provide certain reference for related engineering design.


2011 ◽  
Vol 261-263 ◽  
pp. 923-927
Author(s):  
Jian Zhou ◽  
Zi Han Wang

The characters on double-row pile retaining structures are affected significantly by spatial effects. In this paper, double-row pile retaining structures are simulated numerically in three-dimension by finite element software PLAXIS. The behavior differences among piles in different positions around the foundation pit are analyzed. The results show that the deformation and moment are biggest in the middle of long side of the foundation pit. It is suggested that the earth pressure between the rows above the pit bottom is close to active earth pressure.


2014 ◽  
Vol 505-506 ◽  
pp. 3-8
Author(s):  
Qian Su ◽  
Jian Zhang ◽  
Wen Hui Zhao ◽  
Li Cai Zhang

The plate-chair type retaining structure, which developed from h type anti-slide pile, has the characteristics of high stiffness and small deformations, and is suitable for subgrade retaining engineering on high slopes. The difficulty is that the landslide thrust distribution is not clear and the action of soil between the front and back row piles is not definite. First, a theoretical method of calculating the earth pressure acting on the structure is presented based on analyzing its carrying mechanism. Then an example is analyzed using the method. Finally, on the base of constructing a three-dimensional numerical simulation model of soil-structure interaction using ABAQUS, a validation and comparison between the theoretical calculation and numerical simulation is carried out. The result shows that the method is simple, safer, suitable for designing and can be used in the similar engineering.


Sign in / Sign up

Export Citation Format

Share Document