scholarly journals Far-Red Chlorophyll Fluorescence Radiance Tracks Photosynthetic Carbon Assimilation Efficiency of Dark Reactions

2021 ◽  
Vol 11 (22) ◽  
pp. 10821
Author(s):  
Zhunqiao Liu ◽  
Chenhui Guo ◽  
Yanwen Bai ◽  
Nina Zhang ◽  
Qiang Yu ◽  
...  

Solar-induced chlorophyll fluorescence (SIF) observations from space have shown close relationships with terrestrial photosynthesis rates. SIF originates from the light reactions of photosynthesis, whereas carbon fixation takes place during the dark reactions of photosynthesis. Questions remain regarding whether SIF is able to track changes in the efficiency of the dark reactions in photosynthesis. Using concurrent measurements of leaf-scale gas exchange, pulse amplitude-modulated (PAM) fluorescence, and fluorescence spectral radiances, we found that both far-red fluorescence radiances and PAM fluorescence yields responded rapidly to changes in photosynthetic carbon assimilation due to changes in environmental factors or induced stomatal closure under constant light conditions. Uncertainties in outgoing and incoming irradiance mismatch for SIF measurements may very likely obscure the contributions of the dark reactions, thereby causing the inconsistent findings previously reported, which were no change in far-red SIF and PAM fluorescence yields after clear reductions in the photosynthetic carbon assimilation efficiency of dark reactions. Our results confirm that high-quality SIF measurements have the potential to provide insights into the dark reactions of photosynthesis. This study is particularly relevant for better interpreting satellite SIF observations that are obtained under roughly constant overpass times and relatively stable light intensities.

Parallel measurements of contents of photosynthetic intermediates, activities of enzymes of photosynthetic carbon assimilation, gas-exchange rates and components of chlorophyll-fluorescence quenching in leaves of C 4 plants are considered in relation to changes in photon flux density (PFD) and CO 2 . The influence of varying light and CO 2 concentration upon changes in the amounts of phosphoenolpyruvate (PEP) in leaves of C 4 plants during steady-state photosynthesis are interpreted in terms of the regulatory properties of PEP carboxylase and in terms of feedback interactions between the Calvin cycle and the C 4 cycle. Relations between electron transport and carbon assimilation are discussed in terms of the regulation of the supply of ATP and NADPH and the demands of carbon assimilation. In low light these relations differ in C 3 and C 4 plants. The lag in photosynthetic carbon assimilation in maize that follows a decrease in PFD has been analysed. The changes that occur in enzyme activities, metabolites and components of chlorophyll-fluorescence quenching following the transition from high to low light indicate that diminished production of ATP and NADPH is responsible for the lag in photosynthetic carbon assimilation and may reflect a stimulation of cyclic electron flow to make up a deficit in ATP.


2020 ◽  
Vol 47 (15) ◽  
Author(s):  
J. K. Marrs ◽  
J. S. Reblin ◽  
B. A. Logan ◽  
D. W. Allen ◽  
A. B. Reinmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document