scholarly journals Accurate Measurements of Forest Soil Water Content Using FDR Sensors Require Empirical In Situ (Re)Calibration

2021 ◽  
Vol 11 (24) ◽  
pp. 11620
Author(s):  
Bruno De Vos ◽  
Nathalie Cools ◽  
Arne Verstraeten ◽  
Johan Neirynck

Monitoring volumetric soil water content (θv) is the key for assessing water availability and nutrient fluxes. This study evaluated the empirical accuracy of θv measurements using standard and in situ calibrated frequency domain reflectometers (FDR) with gravimetric water content and bulk density measurements of 1512 samples gathered from 15 profiles across 5 ICP Forests level II intensive monitoring plots. The predicted θv, calibrated with standard functions, predominantly underestimated the real water content. The measurement error exceeded the threshold of 0.03 m3 m−3 in 93% of all soil layers. Layer specific calibration removed bias and reduced the overall prediction error with a factor up to 2.8. A simple linear regression often provided the best calibration model; temperature correction was helpful in specific cases. To adequately remove bias in our study plots, a calibration dataset of up to 24 monthly observations was required for topsoils (whereas 12 observations sufficed for subsoils). Based on estimated precision errors, 3 sensors per soil layer proved to be sufficient, while up to 16 sensors are needed to meet the required accuracy in organic topsoils. Validating FDR sensor outputs using in situ gravimetric measurements is essential for quality control and assurance of long term θv monitoring and for improving site specific instrumentalization.

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3414
Author(s):  
Giuseppe Provenzano ◽  
Giovanni Rallo ◽  
Ceres Duarte Guedes Cabral de Almeida ◽  
Brivaldo Gomes de Almeida

This study aimed to develop a new model, valid for soil with and without expandable characters, to estimate volumetric soil water content (θ) from readings of scaled frequency (SF) acquired with the Diviner 2000® sensor. The analysis was carried out on six soils collected in western Sicily, sieved at 5 mm, and repacked to obtain the maximum and minimum bulk density (ρb). During an air-drying process SF values, the corresponding gravimetric soil water content (U) and ρb were monitored. In shrinking/swelling clay soils, due to the contraction process, the variation of dielectric permittivity was affected by the combination of the mutual proportions between the water volumes and the air present in the soil. Thus, to account for the changes of ρb with U, the proposed model assumed θ as the dependent variable being SF and ρb the independent variables; then the model’s parameters were estimated based on the sand and clay fractions. The model validation was finally carried out based on data acquired in undisturbed monoliths sampled in the same areas. The estimated θ, θestim, was generally close to the corresponding measured, θmeas, with Root Mean Square Errors (RMSE) generally lower than 0.049 cm3 cm−3, quite low Mean Bias Errors (MBE), ranging between −0.028 and 0.045 cm3 cm−3, and always positive Nash-Sutcliffe Efficiency index (NSE), confirming the good performance of the model.


Measurement ◽  
2020 ◽  
Vol 165 ◽  
pp. 108176
Author(s):  
Meng-Ya Sun ◽  
Bin Shi ◽  
Dan Zhang ◽  
Jie Liu ◽  
Jun-Yi Guo ◽  
...  

2010 ◽  
Vol 59 (1) ◽  
pp. 157-164 ◽  
Author(s):  
E. Tóth ◽  
Cs. Farkas

Soil biological properties and CO2emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO2fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO2emission.


2018 ◽  
Vol 10 (6) ◽  
pp. 97-105 ◽  
Author(s):  
Morgan Amanda ◽  
Joseph Pearson Brian ◽  
Shad Ali Gul ◽  
Moore Kimberly ◽  
Osborne Lance

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11766
Author(s):  
Mao Yang ◽  
Runya Yang ◽  
Yanni Li ◽  
Yinghua Pan ◽  
Junna Sun ◽  
...  

The aim of this study was to find a material suited for the prevention of evaporative water loss and salt accumulation in coastal saline soils. One-dimensional vertical water infiltration and phreatic evaporation experiments were conducted using a silty loam saline soil. A 3-cm-thick layer of corn straw, biochar, and peat was buried at the soil depth of 20 cm, and a 6-cm-thick layer of peat was also buried at the same soil depth for comparison. The presence of the biochar layer increased the upper soil water content, but its ability to inhibit salt accumulation was poor, leading to a high salt concentration in the surface soil. The 3-cm-thick straw and 6-cm-thick peat layers were most effective to inhibit salt accumulation, which reduced the upper soil salt concentration by 96% and 93%, respectively. However, the straw layer strongly inhibited phreatic evaporation and resulted in low water content in the upper soil layer. Compared with the straw layer, the peat layer increased the upper soil water content. Thus, burying a 6-cm-thick peat layer in the coastal saline soil is the optimal strategy to retain water in the upper soil layer and intercept salt in the deeper soil layer.


2020 ◽  
Vol 20 (3) ◽  
pp. 860-870 ◽  
Author(s):  
Tao Li ◽  
Jian-feng Zhang ◽  
Si-yuan Xiong ◽  
Rui-xi Zhang

Abstract Assessing the spatial variability of soil water content is important for precision agriculture. To measure the spatial variability of the soil water content and to determine the optimal number of sampling sites for predicting the mean soil water content at different stages of the irrigation cycle, field experiments were carried out in a potato field in northwestern China. The soil water content was measured in 2016 and 2017 at depths of 0–20 and 20–40 cm at 116 georeferenced locations. The average coefficient of variation of the soil water content was 20.79% before irrigation and was 16.44% after irrigation at a depth of 0–20 cm. The spatial structure of the soil water content at a depth of 20–40 cm was similar throughout the irrigation cycle, but at a depth of 0–20 cm a relatively greater portion of the variation in the soil water content was spatially structured before irrigation than after irrigation. The autocorrelation of soil water contents was influenced by irrigation only in the surface soil layer. To accurately predict mean soil moisture content, 40 and 20 random sampling sites should be chosen with errors of 5% and 10%, respectively.


Sign in / Sign up

Export Citation Format

Share Document