scholarly journals Application of the Supercapacitor for Energy Storage in China: Role and Strategy

2021 ◽  
Vol 12 (1) ◽  
pp. 354
Author(s):  
Yanchun Yang ◽  
Yinghui Han ◽  
Wenkun Jiang ◽  
Yuyang Zhang ◽  
Yanmei Xu ◽  
...  

Supercapacitors are widely used in China due to their high energy storage efficiency, long cycle life, high power density and low maintenance cost. This review compares the differences of different types of supercapacitors and the developing trend of electrochemical hybrid energy storage technology. It gives an overview of the application status of supercapacitors in China’s smart grid and Energy Internet in detail. Some strategies and constructive suggestions are put forward to solve the existing problems. With the improvement of the grid-connected capacity of new energy power generation during the 14th Five-year Period of China, the supercapacitor market in China will usher in a good development opportunity. The role of the supercapacitor in achieving carbon peak carbon neutralization is prospected.

Sci ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 3 ◽  
Author(s):  
◽  
◽  
◽  
◽  
◽  
...  

In Electrified Vehicles, the cost, efficiency, and durability of electrified vehicles are dependent on the energy storage system (ESS) components, configuration and its performance. This paper, pursuing a minimal size tactic, describes a methodology for quantitatively and qualitatively investigating the impacts of a full bandwidth load on the ESS in the HEV. However, the methodology can be extended to other electrified vehicles. The full bandwidth load, up to the operating frequency of the electric motor drive (20 kHz), is empirically measured which includes a frequency range beyond the usually covered frequency range by published standard drive cycles (up to 0.5 Hz). The higher frequency band is shown to be more efficiently covered by a Hybrid Energy Storage System (HESS) which in this paper is defined as combination of a high energy density battery, an Ultra-Capacitor (UC), an electrolytic capacitor, and a film capacitor. In this paper, the harmonic and dc currents and voltages are measured through two precision methods and then the results are used to discuss about overall HEV efficiency and durability. More importantly, the impact of the addition of high-band energy storage devices in reduction of power loss during transient events is disclosed through precision measurement based methodology.


Sci ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 26 ◽  
Author(s):  
Masood Shahverdi ◽  
Michael Mazzola ◽  
Matthew Doude ◽  
Quintin Grice ◽  
Jim Gafford ◽  
...  

In Electrified Vehicles, the cost, efficiency, and durability of electrified vehicles are dependent on the energy storage system (ESS) components, configuration and its performance. This paper, pursuing a minimal size tactic, describes a methodology for quantitatively and qualitatively investigating the impacts of a full bandwidth load on the ESS in the HEV. However, the methodology can be extended to other electrified vehicles. The full bandwidth load, up to the operating frequency of the electric motor drive (20 kHz), is empirically measured which includes a frequency range beyond the usually covered frequency range by published standard drive cycles (up to 0.5 Hz). The higher frequency band is shown to be more efficiently covered by a Hybrid Energy Storage System (HESS) which in this paper is defined as combination of a high energy density battery, an Ultra-Capacitor (UC), an electrolytic capacitor, and a film capacitor. In this paper, the harmonic and dc currents and voltages are measured through two precision methods and then the results are used to discuss about overall HEV efficiency and durability. More importantly, the impact of the addition of high-band energy storage devices in reduction of power loss during transient events is disclosed through precision measurement based methodology.


2017 ◽  
Vol 5 (7) ◽  
pp. 3274-3283 ◽  
Author(s):  
Panpan Li ◽  
Zhaoyu Jin ◽  
Dan Xiao

A flexible Ni/Fe hybrid energy storage device is proposed through etching a NiZn alloy and Fe coating in phytic acid solution at room temperature, simultaneously revealing high energy and power density due to the combination of battery and capacitor properties.


2018 ◽  
Vol 8 (7) ◽  
pp. 1176 ◽  
Author(s):  
Mahdi Soltani ◽  
Jan Ronsmans ◽  
Shouji Kakihara ◽  
Joris Jaguemont ◽  
Peter Van den Bossche ◽  
...  

Public transportation based on electric vehicles has attracted significant attention in recent years due to the lower overall emissions it generates. However, there are some barriers to further development and commercialization. Fewer charging facilities in comparison to gas stations, limited battery lifetime, and extra costs associated with its replacement present some barriers to achieve better acceptance. A practical solution to improve the battery lifetime and driving range is to eliminate the large-magnitude pulse current flow from and to the battery during acceleration and deceleration. Hybrid energy storage systems which combine high-power (HP) and high-energy (HE) storage units can be used for this purpose. Lithium-ion capacitors (LiC) can be used as a HP storage unit, which is similar to a supercapacitor cell but with a higher rate capability, a higher energy density, and better cyclability. In this design, the LiC can provide the excess power required while the battery fails to do so. Moreover, hybridization enables a downsizing of the overall energy storage system and decreases the total cost as a consequence of lifetime, performance, and efficiency improvement. The aim of this paper is to investigate the effectiveness of the hybrid energy storage system in protecting the battery from damage due to the high-power rates during charging and discharging. The procedure followed and presented in this paper demonstrates the good performance of the evaluated hybrid storage system to reduce the negative consequences of the power peaks associated with urban driving cycles and its ability to improve the lifespan by 16%.


2014 ◽  
Vol 1035 ◽  
pp. 23-26
Author(s):  
You Jie Ma ◽  
Hong Kun Lu ◽  
Xue Song Zhou

New energy generation parallel operation is an effective way for large-scale development and utilization of new energy generation. The instability of new energy, however, can bring a series of negative influence to stability of power grid. Adjusting the power fluctuations of new energy generation, achieving real-time output stable control, is one of the key technologies of stable operation. The hybrid energy storage system, including lithium ion battery and super capacitor, can reduce the fluctuation effectively. Then it can make new energy generation steady run. In addition, it can reduce the volume, weight and cost of the energy storage system compared with the single battery or super capacitor energy storage.


Author(s):  
D A Wetz ◽  
I J Cohen ◽  
J M Heinzel

As the US Navy transitions to a more electrical fleet, electrical load profiles will exhibit characteristics that have not been traditionally encountered. Conventional power generation devices are unable to meet the unique demands of these load profiles and so must be bolstered with energy storage devices to alleviate transient loading. Active hybrid energy storage modules offer both high-energy and high-power density when compared to traditional energy storage devices. Fuzzy logic control offers a method of controlling such a system to meet MIL-STD-1399 requirements on a shipboard system while requiring little knowledge of the system components. This paper evaluates a fuzzy logic controller’s ability to maintain an energy storage module voltage while accommodating a bi-directional transient load that is representative of one that could be seen aboard a naval vessel. 


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 899
Author(s):  
Philipp Glücker ◽  
Klaus Kivekäs ◽  
Jari Vepsäläinen ◽  
Panagiotis Mouratidis ◽  
Maximilian Schneider ◽  
...  

Electrification of transportation is an effective way to tackle climate change. Public transportation, such as electric buses, operate on predetermined routes and offer quiet operation, zero local emissions and high energy efficiency. However, the batteries of these buses are expensive and wear out in use. The battery ageing is expedited by fast charging and power spikes during operation. The contribution of this paper is the reduction of the power spikes and thus a prolonged battery lifetime. A novel hybrid energy storage system for electric buses is proposed by introducing a flywheel in addition to the existing battery. A simulation model of the hybrid energy storage system is presented, including a battery ageing model to measure the battery lifetime. The bus was simulated during its daily driving operation on different routes with different energy management strategies and flywheel configurations. These different flywheels as well as the driving cycle had a significant impact on the battery life increase. The proposed hybrid battery/flywheel storage system resulted in a battery lifetime increase of 20% on average.


2015 ◽  
Vol 3 (32) ◽  
pp. 16849-16859 ◽  
Author(s):  
Afshin Pendashteh ◽  
Jesus Palma ◽  
Marc Anderson ◽  
Rebeca Marcilla

Nanostructured porous wires of FeCo2O4 supported on nickel foam were synthesized and employed as binder/additive-free electrodes in asymmetric aqueous supercapacitors, showing a high energy density of 23 Wh kg−1.


Author(s):  
Xing Zhang ◽  
Zuomin Dong ◽  
Curran Crawford

Onboard energy storage system (ESS) plays a major role for vehicle electrification. The performance of hybrid electric vehicle (HEV), plug-in HEV (PHEV), extended range electric vehicle (EREV), fuel cell vehicle (FCV), and electric vehicles (EV) heavily depends upon their ESS technology. The ESS must be able to store sufficient energy for adequate pure electric range, provide adequate peak power for needed vehicle performance under various driving cycles, absorb energy efficiently during regenerative breaking, and have long operation life and low costs. At present, pure battery based ESS often cannot effectively meet all these requirements due to many trade-offs. In order to improve the overall performance of ESS, integration of two (or more) energy sources have been studied to best utilize the unique characteristics of each, leading to a hybrid energy storage system (HESS). Hybridization of high-energy batteries and ultracapacitors with complementary characteristics present a common choice today. In this paper, the necessity and superiority of a HESS are illustrated considering system performance, efficiency, costs, functional life, and temperature requirements. Three major types of battery-ultracapacitor HESS, passive, semi-active and fully active, are presented. Various HESS control strategies proposed in the past are then reviewed, including rules or reference curves and tables based control, fuzzy logic control, and closed-loop control. Building upon these review and analyses, a novel control strategy based on signal separation using sparse coding is proposed at the end.


Sign in / Sign up

Export Citation Format

Share Document