scholarly journals Synchronized Assessment of Bridge Structural Damage and Moving Force via Truncated Load Shape Function

2022 ◽  
Vol 12 (2) ◽  
pp. 691
Author(s):  
Jiwei Zhong ◽  
Ziru Xiang ◽  
Cheng Li

Moving load and structural damage assessment has always been a crucial topic in bridge health monitoring, as it helps analyze the daily operating status of bridges and provides fundamental information for bridge safety evaluation. However, most studies and research consider these issues as two separate problems. In practice, unknown moving loads and damage usually coexist and influence the bridge vibration synergically. This paper proposes an innovative synchronized assessment method that determines structural damages and moving forces simultaneously. The method firstly improves the virtual distortion method, which shifts the structural damage into external virtual forces and hence transforms the damage assessment as well as the moving force identification to a multi-force reconstruction problem. Secondly, a truncated load shape function (TLSF) technique is developed to solve the forces in the time domain. As the technique smoothens the pulse function via a limited number of TLSF, the singularity and dimension of the system matrix in the force reconstruction is largely reduced. A continuous beam and a three-dimensional truss bridge are simulated as examples. Case studies show that the method can effectively identify various speeds and numbers of moving loads, as well as different levels of structural damages. The calculation efficiency and robustness to white noise are also impressive.

Author(s):  
Gomasa Ramesh ◽  

Damage may be assessed using several damage indices with values associated with different structural damage states. The usefulness of a variety of current response-based damage indices in seismic damage assessment is addressed and critically assessed. A novel rational damage assessment method is provided, which measures the structure’s physical reaction characteristics. A practical method based on various analyses is given to evaluate the damaged structures in earthquakes of different intensities. This paper provides an overview of previous research works on the damage assessment of the reinforced concrete structures. This study may be helpful for easy understanding about the damage assessment of reinforced concrete structures and reduce the impacts of disaster and surrounding structures.


2020 ◽  
Vol 20 (05) ◽  
pp. 2050065
Author(s):  
Denil Chawda ◽  
Senthil Murugan

This paper studies the dynamic response of a cantilevered beam subjected to a moving moment and torque, and combination of them with a moving force. The moving loads are considered to traverse along the length of the beam either from fixed-to-free end or free-to-fixed end. The beam is considered to have constant material and geometric properties. The beam is modeled using the Rayleigh beam theory considering the rotary inertia effects. The Dirac-delta function used to model the moving loads in the governing partial differential equations (PDEs) has complicated the solution of the problem. The Eigenfunction expansions coupled with the Laplace transformation method is used to find the semi-analytical solution for the resulting governing PDEs. The effects of moving loads on the dynamic response are studied. The dynamic effects are quantified based on the number of oscillations per unit travel time of the moving load and the Dynamic Amplification Factor (DAF) of the beam’s tip response. Numerical results are also analyzed for the two-speed regimes, namely high-speed and low-speed regimes, defined with respect to the critical speed of the moving loads. The accuracy of the analytical solutions are verified by the finite element analysis. The numerical results show that the loads moving with low speeds have significant impact on the dynamic response compared to high speeds. Also, the moving moment has significant impact on the amplitude of dynamic response compared with the moving force case.


2022 ◽  
Vol 1 (3) ◽  
pp. 1-7
Author(s):  
Gomasa Ramesh ◽  

Damage may be assessed using several damage indices with values associated with different structural damage states. The usefulness of a variety of current response-based damage indices in seismic damage assessment is addressed and critically assessed. A novel rational damage assessment method is provided, which measures the structure’s physical reaction characteristics. A practical method based on various analyses is given to evaluate the damaged structures in earthquakes of different intensities. This paper provides an overview of previous research works on the damage assessment of the reinforced concrete structures. This study may be helpful for easy understanding about the damage assessment of reinforced concrete structures and reduce the impacts of disaster and surrounding structures.


Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1571 ◽  
Author(s):  
Jhonatan Camacho Navarro ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica ◽  
Jabid Quiroga

Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 133
Author(s):  
Jérémie Sublime

The Tohoku tsunami was a devastating event that struck North-East Japan in 2011 and remained in the memory of people worldwide. The amount of devastation was so great that it took years to achieve a proper assessment of the economical and structural damage, with the consequences still being felt today. However, this tsunami was also one of the first observed from the sky by modern satellites and aircrafts, thus providing a unique opportunity to exploit these data and train artificial intelligence methods that could help to better handle the aftermath of similar disasters in the future. This paper provides a review of how artificial intelligence methods applied to case studies about the Tohoku tsunami have evolved since 2011. We focus on more than 15 studies that are compared and evaluated in terms of the data they require, the methods used, their degree of automation, their metric performances, and their strengths and weaknesses.


Author(s):  
Chin-Hsiung Loh ◽  
Min-Hsuan Tseng ◽  
Shu-Hsien Chao

One of the important issues to conduct the damage detection of a structure using vibration-based damage detection (VBDD) is not only to detect the damage but also to locate and quantify the damage. In this paper a systematic way of damage assessment, including identification of damage location and damage quantification, is proposed by using output-only measurement. Four level of damage identification algorithms are proposed. First, to identify the damage occurrence, null-space and subspace damage index are used. The eigenvalue difference ratio is also discussed for detecting the damage. Second, to locate the damage, the change of mode shape slope ratio and the prediction error from response using singular spectrum analysis are used. Finally, to quantify the damage the RSSI-COV algorithm is used to identify the change of dynamic characteristics together with the model updating technique, the loss of stiffness can be identified. Experimental data collected from the bridge foundation scouring in hydraulic lab was used to demonstrate the applicability of the proposed methods. The computation efficiency of each method is also discussed so as to accommodate the online damage detection.


2004 ◽  
Vol 3 (2) ◽  
pp. 177-194 ◽  
Author(s):  
Lay Menn Khoo ◽  
P. Raju Mantena ◽  
Prakash Jadhav

2001 ◽  
Vol 17 (1) ◽  
pp. 89-112 ◽  
Author(s):  
Mauricio Sánchez-Silva ◽  
Libardo García

Potential damage assessment is fundamental for defining mitigation procedures and risk management strategies. Damage assessment involves the difficulties of defining, assessing, and modeling the variables involved, as well as handling uncertainty. Seismic damage estimation of structures does not only depend on the behavior of the structural system, but it involves other factors, which differ in nature. The paper presents a methodology for damage assessment of structures that combines systems theory, fuzzy logic, and neural networks. A feed-forward neural network supported on the systemic organization of information is used to assess the expected structural damage for a given earthquake. The methodology provides a very useful environment to consider the context of the building structure. The network has been trained using the damage observed in the recent earthquake that occurred in central Colombia. Several sets of structures were evaluated and the results compared to the damage observed. The model showed to be highly reliable and a good representation of experts' opinions. Computer software ERS-99 was developed and is currently being used for teaching and consulting purposes.


2017 ◽  
Vol 842 ◽  
pp. 012016
Author(s):  
Yun-Lai Zhou ◽  
Cao Hongyou ◽  
Ni Zhen ◽  
Magd Abdel Wahab

Sign in / Sign up

Export Citation Format

Share Document