scholarly journals Detailed Design and Aerodynamic Performance Analysis of a Radial-Inflow Turbine

2018 ◽  
Vol 8 (11) ◽  
pp. 2207 ◽  
Author(s):  
Amir Karimi Noughabi ◽  
Shervin Sammak

Radial-inflow turbines (RI turbines) are critical components of air cycle machines (ACM), utilized in environment conditioning systems (ECS). In this work, a process is presented for the full design of a radial-inflow turbine, including volute, nozzle blade row and rotor blade row. The preliminary and detailed aerodynamic design approaches are explained in detail. A mean-line (1D) analysis method coupled with the preliminary design is employed to evaluate the aerodynamic performance of the RI turbine. Then, ANSYS CFX is used to perform unsteady 3D simulations of the designed RI turbine at design and off-design conditions to predict the aerodynamic performance of the turbine for future optimization.

Wind Energy ◽  
2013 ◽  
Vol 17 (11) ◽  
pp. 1727-1736 ◽  
Author(s):  
Ali Al-Abadi ◽  
Özgür Ertunç ◽  
Horst Weber ◽  
Antonio Delgado

Author(s):  
Michael Casey ◽  
Chris Robinson

This paper describes a newly developed streamline curvature throughflow method for the analysis of radial or mixed flow machines. The code includes curved walls, curved leading and trailing edges, and internal blade row calculating stations. A general method of specifying the empirical data provides separate treatment of blockage, losses, and deviation. Incompressible and compressible fluids are allowed, including real gases and supersonic relative flow in blade rows. The paper describes some new aspects of the code. In particular, a relatively simple numerical model for spanwise mixing is derived, the calculation method for prescribed pressure ratio in compressor bladed rows is described, and the method used to redistribute the flow across the span due to choking is given. Examples are given of the use and validation of the code for many types of radial turbomachinery and these show it is an excellent tool for preliminary design.


1970 ◽  
Vol 92 (3) ◽  
pp. 252-256 ◽  
Author(s):  
J. Dunham ◽  
P. M. Came

In 1951 Ainley and Mathieson published a method of predicting the design and off-design performance of an axial turbine (British ARC, R & M 2974). The flow and hence the losses were calculated at a single “reference diameter” for each blade row. This method has been widely used ever since. A critical review of the method has been made, based on detailed comparisons between the measured and predicted performance of a wide range of modern turbines. As a result, improvements have been made in the formulas for secondary loss and tip clearance loss prediction. The accuracy of the improved method has been assessed. Despite its relatively simple approach, it is believed that it will remain of great value in project work and preliminary design work.


Author(s):  
Dirk Witteck ◽  
Derek Micallef ◽  
Ronald Mailach

Usually, in a turbine an uneven number of blades are selected for vane and blade rows to reduce the level of interaction forces. To consider all unsteady flow phenomena within a turbine the computation of the full annulus is required causing considerable computational cost. Transient blade row methods using few passages reduce the numerical effort significantly. Nevertheless, those approaches provide accurate results. This contribution presents three different unsteady approaches to compare the accuracy and the computational effort, using a full annulus unsteady CFD simulation as a reference. The first approach modifies the blade-to-blade ratio whereas the second method scales the circumferential flow pattern to reach spatial and temporal periodicity. Third approach is based on time-inclining method to overcome unequal blade pitches with less numerical effort. All unsteady CFD simulations are carried out for the transonic test turbine VKI BRITE EURAM using the commercial CFD solver ANSYS CFX 14.5. The resulting unsteady pressure disturbances and blade forces of the different transient blade row methods are compared to each other as well as to experimental data. Finally, the accuracy and the computational costs are discussed in more detail.


1990 ◽  
Vol 112 (3) ◽  
pp. 370-376 ◽  
Author(s):  
J. J. Adamczyk ◽  
M. L. Celestina ◽  
T. A. Beach ◽  
M. Barnett

This work outlines a procedure for simulating the flow field within multistage turbomachinery, which includes the effects of unsteadiness, compressibility, and viscosity. The associated modeling equations are the average passage equation system, which governs the time-averaged flow field within a typical passage of a blade row embedded within a multistage configuration. The results from a simulation of a low aspect ratio stage and one-half turbine will be presented and compared with experimental measurements. It will be shown that the secondary flow field generated by the rotor causes the aerodynamic performance of the downstream vane to be significantly different from that of an isolated blade row.


2021 ◽  
Author(s):  
Alexander Gordon Jackson

The objectives of this research are to examine the effects of trailing edge modifications of the inboard elevon of a blended-wing-body (BWB) aircraft, the goal being to try and reduce the hinge moment of the inboard elevon through selective aerodynamic design. A computational model was built for 60⁰ and 70⁰ beveled trailing edge modifications, as well as no modification. The inboard elevon was deflected positive 5⁰ and negative 5⁰. The numerical solutions were obtained using an implicit solver and inviscid model. The results of this research showed that, through the use of a beveled trailing edge on the inboard elevon, a maximum of 112% reduction in the hinge moment could be achieved for the negative deflection case and a maximum of 88% reduction in the hinge moment for the positive deflection case. The results showed that there was a significant improvement in the hinge moments, with less that a 2% average change in the overall aerodynamic performance of the BWB for the inviscid models.


Sign in / Sign up

Export Citation Format

Share Document